-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathigraph_algos.h
229 lines (186 loc) · 7.39 KB
/
igraph_algos.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
void to_igraph(nnGraph *graph, igraph_t *g, igraph_vector_t *weights) {
igraph_vector_t v, res, reset;
gNode *nodeA;
gItem *gi;
// igraph_t g;
int num_weights;
num_weights = 10;
igraph_vector_init(&v, 0);
int edge_i = 0;
for (int i = 0; i < graph->size; i++) {
nodeA = &graph->nodes[i];
for (int j = 0; j < nodeA->neighbors->size; j++) {
gi = (gItem *)ll_get_item(nodeA->neighbors, j);
// Add edge only once, assume all connections are two way in graph
if (i < gi->id) {
igraph_vector_push_back(&v, i);
igraph_vector_push_back(&v, gi->id);
// if(gi->dist == 0.0) {
// printf("gi-dist:%f\n",gi->dist);
// }
// igraph_vector_push_back(weights, (int) gi->dist*10000);
igraph_vector_push_back(weights, gi->dist+0.000001);
edge_i++;
}
}
}
igraph_create(g, &v, graph->size /*number of vertices*/, 0 /*0=undirected*/);
}
void algo_fast_greedy(nnGraph *graph, Clustering *clu) {
igraph_t g;
igraph_vector_t modularity, weights, membership;
igraph_matrix_t merges;
igraph_matrix_init(&merges, 0, 0);
igraph_vector_init(&modularity, 0);
igraph_vector_init(&membership, 0);
igraph_vector_init(&weights, 0);
to_igraph(graph, &g, &weights);
igraph_community_fastgreedy(&g, &weights, &merges, &modularity, 0 /*membership*/);
igraph_community_to_membership(&merges, igraph_vcount(&g), igraph_vcount(&g) - clu->K,
&membership, 0);
for (int i = 0; i < igraph_vector_size(&membership); i++) {
clu->part[i] = (int)VECTOR(membership)[i];
}
printf("FINAL=1 TIME=%f\n", g_timer.get_time());
}
void algo_walktrap(nnGraph *graph, Clustering *clu) {
igraph_t g;
igraph_vector_t modularity, weights, membership;
igraph_matrix_t merges;
igraph_matrix_init(&merges, 0, 0);
igraph_vector_init(&modularity, 0);
igraph_vector_init(&membership, 0);
igraph_vector_init(&weights, 0);
to_igraph(graph, &g, &weights);
// igraph_community_fastgreedy(&g, &weights, &merges, &modularity, 0 /*membership*/);
igraph_community_walktrap(&g, &weights, 4, &merges, &modularity, 0 /*membership*/);
igraph_community_to_membership(&merges, igraph_vcount(&g), igraph_vcount(&g) - clu->K,
&membership, 0);
for (int i = 0; i < igraph_vector_size(&membership); i++) {
clu->part[i] = (int)VECTOR(membership)[i];
}
printf("FINAL=1 TIME=%f\n", g_timer.get_time());
}
// int igraph_community_walktrap(const igraph_t *graph,
// const igraph_vector_t *weights,
// int steps,
// igraph_matrix_t *merges,
// igraph_vector_t *modularity,
// igraph_vector_t *membership);
// }
void algo_leading_eigenv(nnGraph *graph, Clustering *clu) {
igraph_t g;
igraph_vector_t modularity, weights, membership;
igraph_matrix_t merges;
igraph_matrix_init(&merges, 0, 0);
igraph_vector_init(&modularity, 0);
igraph_vector_init(&membership, 0);
igraph_vector_init(&weights, 0);
to_igraph(graph, &g, &weights);
// igraph_community_fastgreedy(&g, &weights, &merges, &modularity, 0 /*membership*/);
igraph_arpack_options_t options;
igraph_arpack_options_init(&options);
igraph_community_leading_eigenvector(
&g, &weights, &merges, &membership, 1, &options, /*modularity=*/0, /*start=*/0,
/*eigenvalues=*/0, /*eigenvectors=*/0, /*history=*/0, /*callback=*/0, /*callback_extra=*/0);
// int igraph_community_leading_eigenvector(const igraph_t *graph,
// const igraph_vector_t *weights,
// igraph_matrix_t *merges,
// igraph_vector_t *membership,
// igraph_integer_t steps,
// igraph_arpack_options_t *options,
// igraph_real_t *modularity,
// igraph_bool_t start,
// igraph_vector_t *eigenvalues,
// igraph_vector_ptr_t *eigenvectors,
// igraph_vector_t *history,
// igraph_community_leading_eigenvector_callback_t *callback,
// void *callback_extra);
// TODO:
// igraph_le_community_to_membership
igraph_community_to_membership(&merges, igraph_vcount(&g), igraph_vcount(&g) - clu->K,
&membership, 0);
for (int i = 0; i < igraph_vector_size(&membership); i++) {
clu->part[i] = (int)VECTOR(membership)[i];
}
printf("FINAL=1 TIME=%f\n", g_timer.get_time());
}
// https://igraph.org/c/doc/igraph-Community.html#idm231968320928
// VD Blondel, J-L Guillaume, R Lambiotte and E Lefebvre: Fast unfolding of community hierarchies
// in large networks, J Stat Mech P10008 (2008)
void algo_louvain(nnGraph *graph, Clustering *clu) {
igraph_t g;
igraph_vector_t modularity, weights,membership;
// igraph_realt_t membership;
igraph_matrix_t memberships;
igraph_matrix_t merges;
igraph_matrix_init(&memberships, 0, 0);
igraph_matrix_init(&merges, 0, 0);
igraph_vector_init(&modularity, 0);
igraph_vector_init(&membership, 0);
igraph_vector_init(&weights, 0);
to_igraph(graph, &g, &weights);
igraph_community_multilevel(&g, &weights,1, &membership, &memberships, &modularity);
//TODO:
// igraph_vector_max(&membership);
// igraph_community_edge_betweenness(&g, NULL, NULL, &merges, NULL, &modularity, NULL, 0,
// &weights);
// int igraph_community_edge_betweenness(const igraph_t *graph,
// igraph_vector_t *result,
// igraph_vector_t *edge_betweenness,
// igraph_matrix_t *merges,
// igraph_vector_t *bridges,
// igraph_vector_t *modularity,
// igraph_vector_t *membership,
// igraph_bool_t directed,
// const igraph_vector_t *weights);
// igraph_community_fastgreedy(&g, &weights, &merges, &modularity, 0 /*membership*/);
// igraph_community_to_membership(&merges, igraph_vcount(&g), igraph_vcount(&g) - clu->K,
// &membership, 0);
printf("\n");
// Choosing clustering with number of clusters closest to given parameter k
int diff = INT_MAX;
int difftmp, best_clu, best_clu_k;
for (int i = 0; i < igraph_matrix_nrow(&memberships); i++) {
int maxelem = 0;
for (int j = 0; j < igraph_vcount(&g); j++) {
int tmp = MATRIX(memberships, i, j);
if (tmp > maxelem) {
maxelem = tmp;
}
}
difftmp = abs(clu->K - (maxelem + 1));
if (difftmp < diff) {
diff = difftmp;
best_clu = i;
best_clu_k = maxelem + 1;
}
printf("row=%d clusters=%d\n", i, maxelem + 1);
}
printf("Clustering size closest to target, k=%d i=%d diff=%d\n", best_clu_k, best_clu, diff);
for (int i = 0; i < igraph_vcount(&g); i++) {
clu->part[i] = MATRIX(memberships, best_clu, i);
}
// TODO, as option: Choose case of best modularity
// clu->K = igraph_vector_max(&membership) + 1;
printf("FINAL=1 TIME=%f k=%d res_k=%d k_diff=%d \n", g_timer.get_time(), clu->K, best_clu_k,abs(best_clu_k-clu->K));
clu->K = best_clu_k;
}
// https://igraph.org/c/doc/igraph-Community.html#idm231968320928
void algo_edge_betweenness(nnGraph *graph, Clustering *clu) {
igraph_t g;
igraph_vector_t modularity, weights, membership;
igraph_matrix_t merges;
igraph_matrix_init(&merges, 0, 0);
igraph_vector_init(&modularity, 0);
igraph_vector_init(&membership, 0);
igraph_vector_init(&weights, 0);
to_igraph(graph, &g, &weights);
igraph_community_edge_betweenness(&g, NULL, NULL, &merges, NULL, &modularity, NULL, 0, &weights);
igraph_community_to_membership(&merges, igraph_vcount(&g), igraph_vcount(&g) - clu->K,
&membership, 0);
for (int i = 0; i < igraph_vector_size(&membership); i++) {
clu->part[i] = (int)VECTOR(membership)[i];
}
printf("FINAL=1 TIME=%f\n", g_timer.get_time());
}