-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathsum-of-gamma-cli.py
executable file
·64 lines (47 loc) · 1.97 KB
/
sum-of-gamma-cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import sys
import math
import numpy as np
import torch
from torch import Tensor
from torch.distributions.gamma import Gamma
import matplotlib.pyplot as plt
def sample_sum_of_gammas(nb_samples: int,
k: np.ndarray,
nb_iterations: int = 10):
"""These should be the epsilons from Th, 1, """
k_size = k.shape[0]
samples = np.zeros((nb_samples, k_size), dtype='float')
for i in range(1, nb_iterations + 1):
print('XXX', 1. / k, k / i)
gs = np.random.gamma(1. / k, k / i, size=[nb_samples, k_size])
samples = samples + gs
samples = ((samples - math.log(nb_iterations)) / k)
return samples
def sample_sum_of_gammas_torch(batch_size: int,
k: Tensor,
nb_iterations: int = 10):
nb_samples = k.shape[0]
samples = torch.zeros((batch_size, nb_samples))
for i in range(1, nb_iterations + 1):
gamma = Gamma(1. / k, i / k)
samples = samples + gamma.sample(sample_shape=torch.Size([batch_size]))
samples = (samples - math.log(nb_iterations)) / k
return samples
def main(argv):
# samples = sample_sum_of_gammas(8192, k=np.ones(20) * 20, nb_iterations=100)
# print(samples)
# with torch.inference_mode():
# samples = sample_sum_of_gammas_torch(1024, k=torch.ones(20) * 20, nb_iterations=100).cpu().numpy()
from imle.noise import SumOfGammaNoiseDistribution
distribution = SumOfGammaNoiseDistribution(k=20.0, nb_iterations=1000)
with torch.inference_mode():
samples = distribution.sample(shape=torch.Size([8192, 20])).cpu().numpy()
count, bins, ignored = plt.hist(np.sum(samples, axis=1), 32, density=True)
mu, beta = 0.0, 1.0
y = (1 / beta) * np.exp(-(bins - mu) / beta) * np.exp(-np.exp(-(bins - mu) / beta))
plt.plot(bins, y, linewidth=2, color='r')
plt.show()
if __name__ == '__main__':
main(sys.argv[1:])