-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain_synpg.py
289 lines (235 loc) · 12.9 KB
/
train_synpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import os, argparse, h5py, codecs
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from nltk import ParentedTree
from subwordnmt.apply_bpe import BPE, read_vocabulary
from model import SynPG
from utils import Timer, make_path, load_data, load_embedding, load_dictionary, deleaf, sent2str, synt2str
from pprint import pprint
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=str, default="./model/",
help="directory to save models")
parser.add_argument('--output_dir', type=str, default="./output/",
help="directory to save outputs")
parser.add_argument('--bpe_codes_path', type=str, default='./data/bpe.codes',
help="bpe codes file")
parser.add_argument('--bpe_vocab_path', type=str, default='./data/vocab.txt',
help="bpe vcocabulary file")
parser.add_argument('--bpe_vocab_thresh', type=int, default=50,
help="bpe threshold")
parser.add_argument('--dictionary_path', type=str, default="./data/dictionary.pkl",
help="dictionary file")
parser.add_argument('--train_data_path', type=str, default="./data/train_data.h5",
help="training data")
parser.add_argument('--valid_data_path', type=str, default="./data/valid_data.h5",
help="validation data")
parser.add_argument('--emb_path', type=str, default="./data/glove.840B.300d.txt",
help="initialized word embedding")
parser.add_argument('--max_sent_len', type=int, default=40,
help="max length of sentences")
parser.add_argument('--max_synt_len', type=int, default=160,
help="max length of syntax")
parser.add_argument('--word_dropout', type=float, default=0.4,
help="word dropout ratio")
parser.add_argument('--n_epoch', type=int, default=5,
help="number of epoches")
parser.add_argument('--batch_size', type=int, default=64,
help="batch size")
parser.add_argument('--lr', type=float, default=1e-4,
help="learning rate")
parser.add_argument('--weight_decay', type=float, default=1e-5,
help="weight decay for adam")
parser.add_argument('--log_interval', type=int, default=250,
help="print log and validation loss evry 250 iterations")
parser.add_argument('--gen_interval', type=int, default=5000,
help="generate outputs every 500 iterations")
parser.add_argument('--save_interval', type=int, default=10000,
help="save model every 10000 iterations")
parser.add_argument('--temp', type=float, default=0.5,
help="temperature for generating outputs")
parser.add_argument('--seed', type=int, default=0,
help="random seed")
args = parser.parse_args()
pprint(vars(args))
print()
# fix random seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.enabled = False
def train(epoch, model, train_data, valid_data, train_loader, valid_loader, optimizer, criterion, dictionary, bpe, args):
timer = Timer()
n_it = len(train_loader)
for it, data_idxs in enumerate(train_loader):
model.train()
data_idxs = np.sort(data_idxs.numpy())
# get batch of raw sentences and raw syntax
sents_ = train_data[0][data_idxs]
synts_ = train_data[1][data_idxs]
batch_size = len(sents_)
# initialize tensors
sents = np.zeros((batch_size, args.max_sent_len), dtype=np.long) # words without position
synts = np.zeros((batch_size, args.max_synt_len+2), dtype=np.long) # syntax
targs = np.zeros((batch_size, args.max_sent_len+2), dtype=np.long) # target output
for i in range(batch_size):
# bpe segment and convert to tensor
sent_ = sents_[i]
sent_ = bpe.segment(sent_).split()
sent_ = [dictionary.word2idx[w] if w in dictionary.word2idx else dictionary.word2idx["<unk>"] for w in sent_]
sents[i, :len(sent_)] = sent_
# add <sos> and <eos> for target output
targ_ = [dictionary.word2idx["<sos>"]] + sent_ + [dictionary.word2idx["<eos>"]]
targs[i, :len(targ_)] = targ_
# parse syntax and convert to tensor
synt_ = synts_[i]
synt_ = ParentedTree.fromstring(synt_)
synt_ = deleaf(synt_)
synt_ = [dictionary.word2idx[f"<{w}>"] for w in synt_ if f"<{w}>" in dictionary.word2idx]
synt_ = [dictionary.word2idx["<sos>"]] + synt_ + [dictionary.word2idx["<eos>"]]
synts[i, :len(synt_)] = synt_
sents = torch.from_numpy(sents).cuda()
synts = torch.from_numpy(synts).cuda()
targs = torch.from_numpy(targs).cuda()
# forward
outputs = model(sents, synts, targs)
# calculate loss
targs_ = targs[:, 1:].contiguous().view(-1)
outputs_ = outputs.contiguous().view(-1, outputs.size(-1))
optimizer.zero_grad()
loss = criterion(outputs_, targs_)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
if it % args.log_interval == 0:
# print current loss
valid_loss = evaluate(model, valid_data, valid_loader, criterion, dictionary, bpe, args)
print("| ep {:2d}/{} | it {:3d}/{} | {:5.2f} s | loss {:.4f} | g_norm {:.6f} | valid loss {:.4f} |".format(
epoch, args.n_epoch, it, n_it, timer.get_time_from_last(), loss.item(), model.grad_norm, valid_loss))
if it % args.gen_interval == 0:
# generate output to args.output_dir
generate(epoch, it, model, valid_data, valid_loader, dictionary, bpe, args)
if it % args.save_interval == 0:
# save model to args.model_dir
torch.save(model.state_dict(), os.path.join(args.model_dir, "synpg_epoch{:02d}.pt".format(epoch)))
def evaluate(model, data, loader, criterion, dictionary, bpe, args):
model.eval()
total_loss = 0.0
max_it = len(loader)
with torch.no_grad():
for it, data_idxs in enumerate(loader):
data_idxs = np.sort(data_idxs.numpy())
# get batch of raw sentences and raw syntax
sents_ = data[0][data_idxs]
synts_ = data[1][data_idxs]
batch_size = len(sents_)
# initialize tensors
sents = np.zeros((batch_size, args.max_sent_len), dtype=np.long) # words without position
synts = np.zeros((batch_size, args.max_synt_len+2), dtype=np.long) # syntax
targs = np.zeros((batch_size, args.max_sent_len+2), dtype=np.long) # target output
for i in range(batch_size):
# bpe segment and convert to tensor
sent_ = sents_[i]
sent_ = bpe.segment(sent_).split()
sent_ = [dictionary.word2idx[w] if w in dictionary.word2idx else dictionary.word2idx["<unk>"] for w in sent_]
sents[i, :len(sent_)] = sent_
# add <sos> and <eos> for target output
targ_ = [dictionary.word2idx["<sos>"]] + sent_ + [dictionary.word2idx["<eos>"]]
targs[i, :len(targ_)] = targ_
# parse syntax and convert to tensor
synt_ = synts_[i]
synt_ = ParentedTree.fromstring(synt_)
synt_ = deleaf(synt_)
synt_ = [dictionary.word2idx[f"<{w}>"] for w in synt_ if f"<{w}>" in dictionary.word2idx]
synt_ = [dictionary.word2idx["<sos>"]] + synt_ + [dictionary.word2idx["<eos>"]]
synts[i, :len(synt_)] = synt_
sents = torch.from_numpy(sents).cuda()
synts = torch.from_numpy(synts).cuda()
targs = torch.from_numpy(targs).cuda()
# forward
outputs = model(sents, synts, targs)
# calculate loss
targs_ = targs[:, 1:].contiguous().view(-1)
outputs_ = outputs.contiguous().view(-1, outputs.size(-1))
loss = criterion(outputs_, targs_)
total_loss += loss.item()
return total_loss / max_it
def generate(epoch, eit, model, data, loader, dictionary, bpe, args, max_it=10):
model.eval()
with open(os.path.join(args.output_dir, "sents_valid_epoch{:02d}_it{:06d}.txt".format(epoch, eit)), "w") as fp:
with torch.no_grad():
for it, data_idxs in enumerate(loader):
if it >= max_it:
break
data_idxs = np.sort(data_idxs.numpy())
# get batch of raw sentences and raw syntax
sents_ = data[0][data_idxs]
synts_ = data[1][data_idxs]
batch_size = len(sents_)
# initialize tensors
sents = np.zeros((batch_size, args.max_sent_len), dtype=np.long) # words without position
synts = np.zeros((batch_size, args.max_synt_len+2), dtype=np.long) # syntax
targs = np.zeros((batch_size, args.max_sent_len+2), dtype=np.long) # target output
for i in range(batch_size):
# bpe segment and convert to tensor
sent_ = sents_[i]
sent_ = bpe.segment(sent_).split()
sent_ = [dictionary.word2idx[w] if w in dictionary.word2idx else dictionary.word2idx["<unk>"] for w in sent_]
sents[i, :len(sent_)] = sent_
# add <sos> and <eos> for target output
targ_ = [dictionary.word2idx["<sos>"]] + sent_ + [dictionary.word2idx["<eos>"]]
targs[i, :len(targ_)] = targ_
# parse syntax and convert to tensor
synt_ = synts_[i]
synt_ = ParentedTree.fromstring(synt_)
synt_ = deleaf(synt_)
synt_ = [dictionary.word2idx[f"<{w}>"] for w in synt_ if f"<{w}>" in dictionary.word2idx]
synt_ = [dictionary.word2idx["<sos>"]] + synt_ + [dictionary.word2idx["<eos>"]]
synts[i, :len(synt_)] = synt_
sents = torch.from_numpy(sents).cuda()
synts = torch.from_numpy(synts).cuda()
targs = torch.from_numpy(targs).cuda()
# generate
idxs = model.generate(sents, synts, sents.size(1), temp=args.temp)
# write output
for sent, idx, synt in zip(sents.cpu().numpy(), idxs.cpu().numpy(), synts.cpu().numpy()):
fp.write(synt2str(synt[1:], dictionary)+'\n')
fp.write(sent2str(sent, dictionary)+'\n')
fp.write(synt2str(idx, dictionary)+'\n')
fp.write("--\n")
print("==== loading data ====")
# load bpe codes
bpe_codes = codecs.open(args.bpe_codes_path, encoding='utf-8')
bpe_vocab = codecs.open(args.bpe_vocab_path, encoding='utf-8')
bpe_vocab = read_vocabulary(bpe_vocab, args.bpe_vocab_thresh)
bpe = BPE(bpe_codes, '@@', bpe_vocab, None)
# load dictionary and data
dictionary = load_dictionary(args.dictionary_path)
train_data = load_data(args.train_data_path)
valid_data = load_data(args.valid_data_path)
train_idxs = np.arange(len(train_data[0]))
valid_idxs = np.arange(len(valid_data[0]))
print(f"number of train examples: {len(train_data[0])}")
print(f"number of valid examples: {len(valid_data[0])}")
train_loader = DataLoader(train_idxs, batch_size=args.batch_size, shuffle=True)
valid_loader = DataLoader(valid_idxs, batch_size=args.batch_size, shuffle=False)
# build model and load initialized glove embedding
embedding = load_embedding(args.emb_path, dictionary)
model = SynPG(len(dictionary), 300, word_dropout=args.word_dropout)
model.load_embedding(embedding)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
criterion = nn.CrossEntropyLoss(ignore_index=dictionary.word2idx["<pad>"])
model = model.cuda()
criterion = criterion.cuda()
# create folders
make_path(args.model_dir)
make_path(args.output_dir)
print("==== start training ====")
for epoch in range(1, args.n_epoch+1):
# training
train(epoch, model, train_data, valid_data, train_loader, valid_loader, optimizer, criterion, dictionary, bpe, args)
# save model
torch.save(model.state_dict(), os.path.join(args.model_dir, "synpg_epoch{:02d}.pt".format(epoch)))
# shuffle training data
train_loader = DataLoader(train_idxs, batch_size=args.batch_size, shuffle=True)