|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "## Options Backtesting Framework\n", |
| 8 | + "\n", |
| 9 | + "This is a simple backtesting framework for options. Given end of day data for both the capital and derivatives markets, we would be backtesting for different strategies.\n", |
| 10 | + "\n", |
| 11 | + "> All options are opened at the start of the period and closed by the end of the period or by a stop loss if provided\n", |
| 12 | + "\n", |
| 13 | + "### Implementation\n", |
| 14 | + "\n", |
| 15 | + "1. Load and transform necessary data\n", |
| 16 | + "2. Create a list of option contracts to be entered into each day\n", |
| 17 | + "3. Create a list of signals on, whether to enter into the contract, for each day\n", |
| 18 | + "4. Extract the necessary data for the options contracts that would be executed\n", |
| 19 | + "5. Analyze Profit and loss and other metrices\n" |
| 20 | + ] |
| 21 | + }, |
| 22 | + { |
| 23 | + "cell_type": "code", |
| 24 | + "execution_count": 9, |
| 25 | + "metadata": {}, |
| 26 | + "outputs": [], |
| 27 | + "source": [ |
| 28 | + "# Load necessary libraries\n", |
| 29 | + "\n", |
| 30 | + "import pandas as pd\n", |
| 31 | + "import numpy as np\n", |
| 32 | + "from fastbt.rapid import backtest" |
| 33 | + ] |
| 34 | + }, |
| 35 | + { |
| 36 | + "cell_type": "markdown", |
| 37 | + "metadata": {}, |
| 38 | + "source": [ |
| 39 | + "## Utility Functions" |
| 40 | + ] |
| 41 | + }, |
| 42 | + { |
| 43 | + "cell_type": "code", |
| 44 | + "execution_count": 24, |
| 45 | + "metadata": {}, |
| 46 | + "outputs": [ |
| 47 | + { |
| 48 | + "data": { |
| 49 | + "text/plain": [ |
| 50 | + "10225" |
| 51 | + ] |
| 52 | + }, |
| 53 | + "execution_count": 24, |
| 54 | + "metadata": {}, |
| 55 | + "output_type": "execute_result" |
| 56 | + } |
| 57 | + ], |
| 58 | + "source": [ |
| 59 | + "def itm(price, opt='C', step=100):\n", |
| 60 | + " \"\"\"\n", |
| 61 | + " Get the strike price of the in the money option\n", |
| 62 | + " price\n", |
| 63 | + " spot price\n", |
| 64 | + " opt\n", |
| 65 | + " option type - C for Call and P for Put\n", |
| 66 | + " step\n", |
| 67 | + " multiple of option strike price\n", |
| 68 | + " \"\"\"\n", |
| 69 | + " if opt == 'C':\n", |
| 70 | + " return int(price/step)*step\n", |
| 71 | + " elif opt == 'P':\n", |
| 72 | + " return (int(price/step)+1)*step" |
| 73 | + ] |
| 74 | + }, |
| 75 | + { |
| 76 | + "cell_type": "markdown", |
| 77 | + "metadata": {}, |
| 78 | + "source": [ |
| 79 | + "Data Preparation\n", |
| 80 | + "-----------------\n", |
| 81 | + "Load the raw data and do some transformations. All raw options data is loaded from the bhav copy of the NSE website. Index data is from [niftyindices.com](https://www.niftyindices.com/)." |
| 82 | + ] |
| 83 | + }, |
| 84 | + { |
| 85 | + "cell_type": "code", |
| 86 | + "execution_count": 10, |
| 87 | + "metadata": {}, |
| 88 | + "outputs": [], |
| 89 | + "source": [ |
| 90 | + "nifty = pd.read_csv('/home/machine/Downloads/NIFTY 50_Data.csv',\n", |
| 91 | + " parse_dates=['Date'])" |
| 92 | + ] |
| 93 | + }, |
| 94 | + { |
| 95 | + "cell_type": "code", |
| 96 | + "execution_count": null, |
| 97 | + "metadata": {}, |
| 98 | + "outputs": [], |
| 99 | + "source": [] |
| 100 | + } |
| 101 | + ], |
| 102 | + "metadata": { |
| 103 | + "kernelspec": { |
| 104 | + "display_name": "Python 3", |
| 105 | + "language": "python", |
| 106 | + "name": "python3" |
| 107 | + }, |
| 108 | + "language_info": { |
| 109 | + "codemirror_mode": { |
| 110 | + "name": "ipython", |
| 111 | + "version": 3 |
| 112 | + }, |
| 113 | + "file_extension": ".py", |
| 114 | + "mimetype": "text/x-python", |
| 115 | + "name": "python", |
| 116 | + "nbconvert_exporter": "python", |
| 117 | + "pygments_lexer": "ipython3", |
| 118 | + "version": "3.6.8" |
| 119 | + } |
| 120 | + }, |
| 121 | + "nbformat": 4, |
| 122 | + "nbformat_minor": 2 |
| 123 | +} |
0 commit comments