Skip to content

PyTorch implementation of "Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization"

Notifications You must be signed in to change notification settings

tyui592/AdaIN_Pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Adaptive Instance Normalization

Unofficial Pytorch Implementation "Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization"

Reference: Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization, ICCV 2017

Requirements

  • torch (version: 1.2.0)
  • torchvision (version: 0.4.0)
  • Pillow (version: 6.1.0)
  • matplotlib (version: 3.1.1)

Download

Usage

Arguments

  • --train: Train flag to learn the style transfer network
  • --content-dir: Content dataset path for learn the style transfer network
  • --style-dir: Style dataset path for learn the style transfer network
  • --imsize: Size to resize the shorter side of the image (maintaining the aspect ratio)
  • --cropsize: Size to crop the image
  • --cencrop: Flag for crop the center region of the image (default: randomly crop)
  • --style-weight: Style loss weight (If you want to enhance the style, increase this value to train the network)
  • --gpu-no: Device no (-1: cpu, 0~N: gpu)
  • --content: Source contenet image
  • --style: Target style image
  • --mask: Mask to generate masked stylized image
  • --style-strength: Trade off factor between content and style (1.0: style, 0.0: content)
  • --interpolation-weights: Interpolation weights of multiple styles
  • --load-path: Model load path
  • --layers: Layer Indices to extract content and style features
  • --preserve-color: Flag for color preserved stylization

Example Scripts

Training

python main.py --train --imsize 512 --cropsize 256 --content-dir ./coco2014/ --style-dir ./painter_by_numbers/
  • Training loss

training_loss

Generat the stylized image

python main.py --imsize 512 --content ./imgs/content/lena.jpg --style ./imgs/style/abstraction.jpg --load-path ./check_point.pth --style-strength 1.0

Generat the stylized image with multiple styles

python main.py --imsize 512 --content ./imgs/content/chicago.jpg --style ./imgs/style/abstraction.jpg ./imgs/style/starry_night.jpg --load-path ./check_point.pth --style-strength 1.0 --interpolation-weights 0.5 0.5

Generat the stylized image with multiple styles and masks

python main.py --imsize 512 --content ./imgs/content/blonde_girl.jpg --style ./imgs/style/mondrian.jpg ./imgs/style/starry_night.jpg --mask ./imgs/mask/blonde_girl_mask1.jpg ./imgs/mask/blonde_girl_mask2.jpg --load-path ./check_point.pth --style-strength 1.0 --interpolation-weights 1.0 1.0

Generat the color preserved stylized image

python main.py --imsize 512 --content ./imgs/content/blonde_girl.jpg --style ./imgs/style/mondrian.jpg --load-path ./check_point.pth --preserve-color

Results

Stylized image with single style

stylized_image

Stylized image with multiple styles

multi-stylized_image

Stylized image with multiple styles and masks

mask_multi-stylized_image

Color preserved stylized image

color_preserved_image

About

PyTorch implementation of "Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization"

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published