-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
246 lines (217 loc) · 10.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from paddle import fluid
from paddle.fluid.regularizer import L2Decay
from paddle.fluid.dygraph import to_variable, Linear
from model.resnet import generate_model
import numpy as np
from reader import custom_reader
from mixup import create_mixup_reader
from pathlib import Path
from ReduceLROnPlateau import ReduceLROnPlateau
import time
import datetime
import os
import paddle
from visualdl import LogWriter
import json
import math
from paddle.fluid import ParamAttr
from utils import AverageMeter
import argparse
num_sample = 9537
BATCH_SIZE = 128
MAX_EPOCH = 200
n_classes = 101
best_accuracy = 0.0
MIX_UP = True
def get_module_name(name,l=1):
name = name.split('.')
if name[0] == 'module':
i = 1
else:
i = 0
if name[i] == 'features':
i += 1
return '.'.join(name[i:i+l])
def _calc_label_smoothing_loss(softmax_out, label, class_dim, epsilon):
"""Calculate label smoothing loss
Returns:
label smoothing loss
"""
label_one_hot = fluid.layers.one_hot(input=label, depth=class_dim)
smooth_label = fluid.layers.label_smooth(
label=label_one_hot, epsilon=epsilon, dtype="float32")
loss = fluid.layers.cross_entropy(
input=softmax_out, label=smooth_label, soft_label=True)
return loss
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--mixup',
action='store_true',
help='If true, enable mixup data augmentation.')
args = parser.parse_args()
MIX_UP = args.mixup
root_path = '/home/aistudio/dataset/UCF-101-jpg'
# root_path = '/Users/alex/baidu/3dresnet-data/UCF-101-jpg'
annotation_path = 'ucf101_json/ucf101_01.json'
train_reader = custom_reader(Path(root_path), Path(annotation_path), mode='train', batch_size=BATCH_SIZE)
val_reader = custom_reader(Path(root_path), Path(annotation_path), mode='val', batch_size=BATCH_SIZE)
train_reader = paddle.batch(fluid.io.shuffle(train_reader, BATCH_SIZE), batch_size=BATCH_SIZE, drop_last=False)
if MIX_UP:
train_reader = create_mixup_reader(0.2, train_reader)
train_reader = paddle.batch(
train_reader,
batch_size=BATCH_SIZE,
drop_last=False)
iter_per_epoch = int(math.ceil(num_sample / BATCH_SIZE))
boundaries = [iter_per_epoch * 50, iter_per_epoch * 100, iter_per_epoch * 150]
use_gpu = True
place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
with fluid.dygraph.guard(place):
train_data_loader = fluid.io.DataLoader.from_generator(capacity=5)
val_data_loader = fluid.io.DataLoader.from_generator(capacity=5)
train_data_loader.set_sample_list_generator(train_reader, places=place)
val_data_loader.set_sample_list_generator(val_reader, places=place)
model = generate_model(50, n_classes=1039)
state_dic, _ = fluid.dygraph.load_dygraph('paddle_resnet50_mk.pdparams')
model.set_dict(state_dic)
stdv = 1. / math.sqrt(model.fc_in_dim)
model.fc = Linear(model.fc_in_dim, n_classes,
param_attr=ParamAttr(name='fc.weight',
initializer=fluid.initializer.Uniform(-stdv, stdv)),
bias_attr=ParamAttr(name='fc.bias',
initializer=fluid.initializer.Uniform(-stdv, stdv))
)
parameters = []
add_flag = False
for k, v in model.named_parameters():
name = get_module_name(k,1)
if 'layer4' == name:
add_flag = True
if add_flag:
parameters.append(v)
print(k)
if MIX_UP:
lr = fluid.dygraph.ExponentialDecay(
learning_rate=0.003,
decay_steps=MAX_EPOCH * iter_per_epoch,
decay_rate=0.5
)
opt = fluid.optimizer.Momentum(
learning_rate=lr,
momentum=0.9,
parameter_list=parameters,
regularization=L2Decay(1e-4))
else:
lr = ReduceLROnPlateau(
learning_rate=0.003,
mode='min',
verbose=True,
patience=10
)
opt = fluid.optimizer.Momentum(
learning_rate=lr,
momentum=0.9,
parameter_list=parameters,
regularization=L2Decay(1e-3))
for epoch in range(1, MAX_EPOCH + 1):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
accuracies = AverageMeter()
end_time = time.time()
model.train()
with LogWriter(logdir="./log/train") as writer:
for i, data in enumerate(train_data_loader()):
data_time.update(time.time() - end_time)
if MIX_UP:
img, l1, l2, lam = data
lam = fluid.layers.cast(lam, 'float32')
else:
img, label = data
out = model(img)
out = fluid.layers.softmax(out)
if MIX_UP:
loss_a = _calc_label_smoothing_loss(out, l1, n_classes, 0.1)
loss_b = _calc_label_smoothing_loss(out, l2, n_classes, 0.1)
loss_a_mean = fluid.layers.mean(loss_a)
loss_b_mean = fluid.layers.mean(loss_b)
loss = lam * loss_a_mean + (1.0 - lam) * loss_b_mean
loss = fluid.layers.mean(x=loss)
acc = fluid.layers.accuracy(out, l1)
else:
loss = fluid.layers.cross_entropy(out, label)
loss = fluid.layers.reduce_mean(loss)
acc = fluid.layers.accuracy(out, label)
losses.update(loss.numpy()[0], img.shape[0])
accuracies.update(acc.numpy()[0], img.shape[0])
loss.backward()
opt.minimize(loss)
model.clear_gradients()
batch_time.update(time.time() - end_time)
end_time = time.time()
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc {acc.val:.3f} ({acc.avg:.3f})'.format(epoch,
i + 1,
iter_per_epoch,
batch_time=batch_time,
data_time=data_time,
loss=losses,
acc=accuracies))
# 向记录器添加一个tag为`acc`的数据
writer.add_scalar(tag="train/acc", step=epoch, value=accuracies.avg)
# 向记录器添加一个tag为`loss`的数据
writer.add_scalar(tag="train/loss", step=epoch, value=losses.avg)
with LogWriter(logdir="./log/eval") as writer:
with fluid.dygraph.no_grad():
model.eval()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
accuracies = AverageMeter()
end_time = time.time()
for i, data in enumerate(val_data_loader()):
data_time.update(time.time() - end_time)
img, label = data
out = model(img)
out = fluid.layers.softmax(out)
acc = fluid.layers.accuracy(out, label)
loss = fluid.layers.cross_entropy(out, label)
loss = fluid.layers.mean(x=loss)
losses.update(loss.numpy()[0], img.shape[0])
accuracies.update(acc.numpy()[0], img.shape[0])
batch_time.update(time.time() - end_time)
end_time = time.time()
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc {acc.val:.3f} ({acc.avg:.3f})'.format(
epoch,
i + 1,
91,
batch_time=batch_time,
data_time=data_time,
loss=losses,
acc=accuracies))
# 向记录器添加一个tag为`acc`的数据
writer.add_scalar(tag="train/acc", step=epoch, value=accuracies.avg)
# 向记录器添加一个tag为`loss`的数据
writer.add_scalar(tag="train/loss", step=epoch, value=losses.avg)
print(f'Test acc :{accuracies.avg}, loss:{losses.avg}')
if not os.path.exists('./model_weights'):
os.makedirs('./model_weights')
with open('./model_weights/eval_log.txt', 'a') as f:
f.write(f'epoch:{epoch} Test acc :{accuracies.avg}, loss:{losses.avg}\n')
# lr.step(to_variable(np.array([losses.avg]).astype('float32')))
if accuracies.avg > best_accuracy:
with open('./model_weights/best_accuracy.txt', 'w') as f:
f.write(f'{epoch}:{accuracies.avg }')
best_accuracy = accuracies.avg
fluid.save_dygraph(model.state_dict(), './model_weights/best_accuracy')
if epoch % 10 == 0:
fluid.save_dygraph(model.state_dict(), f'./model_weights/{epoch}_model')
fluid.save_dygraph(model.state_dict(), f'./model_weights/{MAX_EPOCH}_model')