-
Notifications
You must be signed in to change notification settings - Fork 106
/
bounds.go
178 lines (160 loc) · 4.58 KB
/
bounds.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
package geom
import "math"
// A Bounds represents a multi-dimensional bounding box.
type Bounds struct {
layout Layout
min Coord
max Coord
}
// NewBounds creates a new Bounds.
func NewBounds(layout Layout) *Bounds {
stride := layout.Stride()
min, max := make(Coord, stride), make(Coord, stride)
for i := 0; i < stride; i++ {
min[i], max[i] = math.Inf(1), math.Inf(-1)
}
return &Bounds{
layout: layout,
min: min,
max: max,
}
}
// Clone returns a deep copy of b.
func (b *Bounds) Clone() *Bounds {
return deriveCloneBounds(b)
}
// Extend extends b to include geometry g.
func (b *Bounds) Extend(g T) *Bounds {
b.extendLayout(g.Layout())
if b.layout == XYZM && g.Layout() == XYM {
return b.extendXYZMFlatCoordsWithXYM(g.FlatCoords(), 0, len(g.FlatCoords()))
}
return b.extendFlatCoords(g.FlatCoords(), 0, len(g.FlatCoords()), g.Stride())
}
// IsEmpty returns true if b is empty.
func (b *Bounds) IsEmpty() bool {
if b.layout == NoLayout {
return true
}
for i, stride := 0, b.layout.Stride(); i < stride; i++ {
if b.max[i] < b.min[i] {
return true
}
}
return false
}
// Layout returns b's layout.
func (b *Bounds) Layout() Layout {
return b.layout
}
// Max returns the maximum value in dimension dim.
func (b *Bounds) Max(dim int) float64 {
return b.max[dim]
}
// Min returns the minimum value in dimension dim.
func (b *Bounds) Min(dim int) float64 {
return b.min[dim]
}
// Overlaps returns true if b overlaps b2 in layout.
func (b *Bounds) Overlaps(layout Layout, b2 *Bounds) bool {
for i, stride := 0, layout.Stride(); i < stride; i++ {
if b.min[i] > b2.max[i] || b.max[i] < b2.min[i] {
return false
}
}
return true
}
// Polygon returns b as a two-dimensional Polygon.
func (b *Bounds) Polygon() *Polygon {
if b.IsEmpty() {
return NewPolygonFlat(XY, nil, nil)
}
x1, y1 := b.min[0], b.min[1]
x2, y2 := b.max[0], b.max[1]
flatCoords := []float64{
x1, y1,
x1, y2,
x2, y2,
x2, y1,
x1, y1,
}
return NewPolygonFlat(XY, flatCoords, []int{len(flatCoords)})
}
// Set sets the minimum and maximum values. args must be an even number of
// values: the first half are the minimum values for each dimension and the
// second half are the maximum values for each dimension. If necessary, the
// layout of b will be extended to cover all the supplied dimensions implied by
// args.
func (b *Bounds) Set(args ...float64) *Bounds {
if len(args)&1 != 0 {
panic("geom: even number of arguments required")
}
stride := len(args) / 2
b.extendStride(stride)
for i := 0; i < stride; i++ {
b.min[i], b.max[i] = args[i], args[i+stride]
}
return b
}
// SetCoords sets the minimum and maximum values of the Bounds.
func (b *Bounds) SetCoords(min, max Coord) *Bounds {
b.min = Coord(make([]float64, b.layout.Stride()))
b.max = Coord(make([]float64, b.layout.Stride()))
for i := 0; i < b.layout.Stride(); i++ {
b.min[i] = math.Min(min[i], max[i])
b.max[i] = math.Max(min[i], max[i])
}
return b
}
// OverlapsPoint determines if the bounding box overlaps the point (point is
// within or on the border of the bounds).
func (b *Bounds) OverlapsPoint(layout Layout, point Coord) bool {
for i, stride := 0, layout.Stride(); i < stride; i++ {
if b.min[i] > point[i] || b.max[i] < point[i] {
return false
}
}
return true
}
func (b *Bounds) extendFlatCoords(flatCoords []float64, offset, end, stride int) *Bounds {
b.extendStride(stride)
for i := offset; i < end; i += stride {
for j := 0; j < stride; j++ {
b.min[j] = math.Min(b.min[j], flatCoords[i+j])
b.max[j] = math.Max(b.max[j], flatCoords[i+j])
}
}
return b
}
func (b *Bounds) extendLayout(layout Layout) {
switch {
case b.layout == XYZ && layout == XYM:
b.min = append(b.min, math.Inf(1))
b.max = append(b.max, math.Inf(-1))
b.layout = XYZM
case b.layout == XYM && (layout == XYZ || layout == XYZM):
b.min = append(b.min[:2], math.Inf(1), b.min[2])
b.max = append(b.max[:2], math.Inf(-1), b.max[2])
b.layout = XYZM
case b.layout < layout:
b.extendStride(layout.Stride())
b.layout = layout
}
}
func (b *Bounds) extendStride(stride int) {
for s := b.layout.Stride(); s < stride; s++ {
b.min = append(b.min, math.Inf(1))
b.max = append(b.max, math.Inf(-1))
}
}
func (b *Bounds) extendXYZMFlatCoordsWithXYM(flatCoords []float64, offset, end int) *Bounds {
for i := offset; i < end; i += 3 {
b.min[0] = math.Min(b.min[0], flatCoords[i+0])
b.max[0] = math.Max(b.max[0], flatCoords[i+0])
b.min[1] = math.Min(b.min[1], flatCoords[i+1])
b.max[1] = math.Max(b.max[1], flatCoords[i+1])
b.min[3] = math.Min(b.min[3], flatCoords[i+2])
b.max[3] = math.Max(b.max[3], flatCoords[i+2])
}
return b
}