-
Notifications
You must be signed in to change notification settings - Fork 14
/
queue.rs
1468 lines (1327 loc) · 47 KB
/
queue.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! A queue (fifo) implementation for storing arbitrary data in flash memory.
//!
//! Use [push] to add data to the fifo and use [peek] and [pop] to get the data back.
//!
//! ```rust
//! # use sequential_storage::queue::{push, peek, pop};
//! # use sequential_storage::cache::NoCache;
//! # use mock_flash::MockFlashBase;
//! # use futures::executor::block_on;
//! # type Flash = MockFlashBase<10, 1, 4096>;
//! # mod mock_flash {
//! # include!("mock_flash.rs");
//! # }
//! #
//! # fn init_flash() -> Flash {
//! # Flash::new(mock_flash::WriteCountCheck::Twice, None, false)
//! # }
//! #
//! # block_on(async {
//!
//! // Initialize the flash. This can be internal or external
//! let mut flash = init_flash();
//! // These are the flash addresses in which the crate will operate.
//! // The crate will not read, write or erase outside of this range.
//! let flash_range = 0x1000..0x3000;
//! // We need to give the crate a buffer to work with.
//! // It must be big enough to serialize the biggest value of your storage type in.
//! let mut data_buffer = [0; 128];
//!
//! let my_data = [10, 47, 29];
//!
//! // We can push some data to the queue
//! push(&mut flash, flash_range.clone(), &mut NoCache::new(), &my_data, false).await.unwrap();
//!
//! // We can peek at the oldest data
//!
//! assert_eq!(
//! &peek(&mut flash, flash_range.clone(), &mut NoCache::new(), &mut data_buffer).await.unwrap().unwrap()[..],
//! &my_data[..]
//! );
//!
//! // With popping we get back the oldest data, but that data is now also removed
//!
//! assert_eq!(
//! &pop(&mut flash, flash_range.clone(), &mut NoCache::new(), &mut data_buffer).await.unwrap().unwrap()[..],
//! &my_data[..]
//! );
//!
//! // If we pop again, we find there's no data anymore
//!
//! assert_eq!(
//! pop(&mut flash, flash_range.clone(), &mut NoCache::new(), &mut data_buffer).await,
//! Ok(None)
//! );
//! # });
//! ```
use crate::item::{find_next_free_item_spot, is_page_empty, Item, ItemHeader, ItemHeaderIter};
use self::{cache::CacheImpl, item::ItemUnborrowed};
use super::*;
use embedded_storage_async::nor_flash::MultiwriteNorFlash;
/// Push data into the queue in the given flash memory with the given range.
/// The data can only be taken out with the [pop] function.
///
/// Old data will not be overwritten unless `allow_overwrite_old_data` is true.
/// If it is, then if the queue is full, the oldest data is removed to make space for the new data.
///
/// *Note: If a page is already used and you push more data than the remaining capacity of the page,
/// the entire remaining capacity will go unused because the data is stored on the next page.*
pub async fn push<S: NorFlash>(
flash: &mut S,
flash_range: Range<u32>,
cache: &mut impl CacheImpl,
data: &[u8],
allow_overwrite_old_data: bool,
) -> Result<(), Error<S::Error>> {
run_with_auto_repair!(
function = push_inner(
flash,
flash_range.clone(),
cache,
data,
allow_overwrite_old_data
)
.await,
repair = try_repair(flash, flash_range.clone(), cache).await?
)
}
async fn push_inner<S: NorFlash>(
flash: &mut S,
flash_range: Range<u32>,
cache: &mut impl CacheImpl,
data: &[u8],
allow_overwrite_old_data: bool,
) -> Result<(), Error<S::Error>> {
assert_eq!(flash_range.start % S::ERASE_SIZE as u32, 0);
assert_eq!(flash_range.end % S::ERASE_SIZE as u32, 0);
assert!(S::ERASE_SIZE >= S::WORD_SIZE * 4);
assert!(S::WORD_SIZE <= MAX_WORD_SIZE);
if cache.is_dirty() {
cache.invalidate_cache_state();
}
// Data must fit in a single page
if data.len() > u16::MAX as usize
|| data.len()
> calculate_page_size::<S>().saturating_sub(ItemHeader::data_address::<S>(0) as usize)
{
cache.unmark_dirty();
return Err(Error::ItemTooBig);
}
let current_page = find_youngest_page(flash, flash_range.clone(), cache).await?;
let page_data_start_address =
calculate_page_address::<S>(flash_range.clone(), current_page) + S::WORD_SIZE as u32;
let page_data_end_address =
calculate_page_end_address::<S>(flash_range.clone(), current_page) - S::WORD_SIZE as u32;
partial_close_page(flash, flash_range.clone(), cache, current_page).await?;
// Find the last item on the page so we know where we need to write
let mut next_address = find_next_free_item_spot(
flash,
flash_range.clone(),
cache,
page_data_start_address,
page_data_end_address,
data.len() as u32,
)
.await?;
if next_address.is_none() {
// No cap left on this page, move to the next page
let next_page = next_page::<S>(flash_range.clone(), current_page);
match get_page_state(flash, flash_range.clone(), cache, next_page).await? {
PageState::Open => {
close_page(flash, flash_range.clone(), cache, current_page).await?;
partial_close_page(flash, flash_range.clone(), cache, next_page).await?;
next_address = Some(
calculate_page_address::<S>(flash_range.clone(), next_page)
+ S::WORD_SIZE as u32,
);
}
state @ PageState::Closed => {
let next_page_data_start_address =
calculate_page_address::<S>(flash_range.clone(), next_page)
+ S::WORD_SIZE as u32;
if !allow_overwrite_old_data
&& !is_page_empty(flash, flash_range.clone(), cache, next_page, Some(state))
.await?
{
cache.unmark_dirty();
return Err(Error::FullStorage);
}
open_page(flash, flash_range.clone(), cache, next_page).await?;
close_page(flash, flash_range.clone(), cache, current_page).await?;
partial_close_page(flash, flash_range.clone(), cache, next_page).await?;
next_address = Some(next_page_data_start_address);
}
PageState::PartialOpen => {
// This should never happen
return Err(Error::Corrupted {
#[cfg(feature = "_test")]
backtrace: std::backtrace::Backtrace::capture(),
});
}
}
}
Item::write_new(
flash,
flash_range.clone(),
cache,
next_address.unwrap(),
data,
)
.await?;
cache.unmark_dirty();
Ok(())
}
/// Get an iterator-like interface to iterate over the items stored in the queue.
/// This goes from oldest to newest.
///
/// The iteration happens non-destructively, or in other words it peeks at every item.
/// The returned entry has a [QueueIteratorEntry::pop] function with which you can decide to pop the item
/// after you've seen the contents.
pub async fn iter<'s, S: NorFlash, CI: CacheImpl>(
flash: &'s mut S,
flash_range: Range<u32>,
cache: &'s mut CI,
) -> Result<QueueIterator<'s, S, CI>, Error<S::Error>> {
// Note: Corruption repair is done in these functions already
QueueIterator::new(flash, flash_range, cache).await
}
/// Peek at the oldest data.
///
/// If you also want to remove the data use [pop].
///
/// The data is written to the given `data_buffer` and the part that was written is returned.
/// It is valid to only use the length of the returned slice and use the original `data_buffer`.
/// The `data_buffer` may contain extra data on ranges after the returned slice.
/// You should not depend on that data.
///
/// If the data buffer is not big enough an error is returned.
pub async fn peek<'d, S: NorFlash>(
flash: &mut S,
flash_range: Range<u32>,
cache: &mut impl CacheImpl,
data_buffer: &'d mut [u8],
) -> Result<Option<&'d mut [u8]>, Error<S::Error>> {
// Note: Corruption repair is done in these functions already
let mut iterator = iter(flash, flash_range, cache).await?;
let next_value = iterator.next(data_buffer).await?;
match next_value {
Some(entry) => Ok(Some(entry.into_buf())),
None => Ok(None),
}
}
/// Pop the oldest data from the queue.
///
/// If you don't want to remove the data use [peek].
///
/// The data is written to the given `data_buffer` and the part that was written is returned.
/// It is valid to only use the length of the returned slice and use the original `data_buffer`.
/// The `data_buffer` may contain extra data on ranges after the returned slice.
/// You should not depend on that data.
///
/// If the data buffer is not big enough an error is returned.
pub async fn pop<'d, S: MultiwriteNorFlash>(
flash: &mut S,
flash_range: Range<u32>,
cache: &mut impl CacheImpl,
data_buffer: &'d mut [u8],
) -> Result<Option<&'d mut [u8]>, Error<S::Error>> {
let mut iterator = iter(flash, flash_range, cache).await?;
let next_value = iterator.next(data_buffer).await?;
match next_value {
Some(entry) => Ok(Some(entry.pop().await?)),
None => Ok(None),
}
}
/// An iterator-like interface for peeking into data stored in flash with the option to pop it.
pub struct QueueIterator<'s, S: NorFlash, CI: CacheImpl> {
flash: &'s mut S,
flash_range: Range<u32>,
cache: &'s mut CI,
next_address: NextAddress,
}
impl<'d, S: NorFlash, CI: CacheImpl> Debug for QueueIterator<'d, S, CI> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.debug_struct("QueueIterator")
.field("current_address", &self.next_address)
.finish_non_exhaustive()
}
}
#[derive(Debug, Clone)]
enum NextAddress {
Address(u32),
PageAfter(usize),
}
impl<'s, S: NorFlash, CI: CacheImpl> QueueIterator<'s, S, CI> {
async fn new(
flash: &'s mut S,
flash_range: Range<u32>,
cache: &'s mut CI,
) -> Result<Self, Error<S::Error>> {
let start_address = run_with_auto_repair!(
function = Self::find_start_address(flash, flash_range.clone(), cache).await,
repair = try_repair(flash, flash_range.clone(), cache).await?
)?;
Ok(Self {
flash,
flash_range,
cache,
next_address: start_address,
})
}
async fn find_start_address(
flash: &mut S,
flash_range: Range<u32>,
cache: &mut CI,
) -> Result<NextAddress, Error<S::Error>> {
assert_eq!(flash_range.start % S::ERASE_SIZE as u32, 0);
assert_eq!(flash_range.end % S::ERASE_SIZE as u32, 0);
assert!(S::ERASE_SIZE >= S::WORD_SIZE * 4);
assert!(S::WORD_SIZE <= MAX_WORD_SIZE);
if cache.is_dirty() {
cache.invalidate_cache_state();
}
let oldest_page = find_oldest_page(flash, flash_range.clone(), cache).await?;
// We start at the start of the oldest page
let current_address = match cache.first_item_after_erased(oldest_page) {
Some(address) => address,
None => {
calculate_page_address::<S>(flash_range.clone(), oldest_page) + S::WORD_SIZE as u32
}
};
Ok(NextAddress::Address(current_address))
}
/// Get the next entry.
///
/// If there are no more entries, None is returned.
///
/// The `data_buffer` has to be large enough to be able to hold the largest item in flash.
pub async fn next<'d, 'q>(
&'q mut self,
data_buffer: &'d mut [u8],
) -> Result<Option<QueueIteratorEntry<'s, 'd, 'q, S, CI>>, Error<S::Error>> {
let value = run_with_auto_repair!(
function = self.next_inner(data_buffer).await,
repair = try_repair(self.flash, self.flash_range.clone(), self.cache).await?
);
value.map(|v| {
v.map(|(item, address)| QueueIteratorEntry {
iter: self,
item: item.reborrow(data_buffer),
address,
})
})
}
async fn next_inner(
&mut self,
data_buffer: &mut [u8],
) -> Result<Option<(ItemUnborrowed, u32)>, Error<S::Error>> {
let mut data_buffer = Some(data_buffer);
if self.cache.is_dirty() {
self.cache.invalidate_cache_state();
}
loop {
// Get the current page and address based on what was stored
let (current_page, current_address) = match self.next_address {
NextAddress::PageAfter(previous_page) => {
let next_page = next_page::<S>(self.flash_range.clone(), previous_page);
if get_page_state(
self.flash,
self.flash_range.clone(),
&mut self.cache,
next_page,
)
.await?
.is_open()
|| next_page
== find_oldest_page(
self.flash,
self.flash_range.clone(),
&mut self.cache,
)
.await?
{
self.cache.unmark_dirty();
return Ok(None);
}
let current_address =
calculate_page_address::<S>(self.flash_range.clone(), next_page)
+ S::WORD_SIZE as u32;
self.next_address = NextAddress::Address(current_address);
(next_page, current_address)
}
NextAddress::Address(address) => (
calculate_page_index::<S>(self.flash_range.clone(), address),
address,
),
};
let page_data_end_address =
calculate_page_end_address::<S>(self.flash_range.clone(), current_page)
- S::WORD_SIZE as u32;
// Search for the first item with data
let mut it = ItemHeaderIter::new(current_address, page_data_end_address);
// No need to worry about cache here since that has been dealt with at the creation of this iterator
if let (Some(found_item_header), found_item_address) = it
.traverse(self.flash, |header, _| header.crc.is_none())
.await?
{
let maybe_item = found_item_header
.read_item(
self.flash,
data_buffer.take().unwrap(),
found_item_address,
page_data_end_address,
)
.await?;
match maybe_item {
item::MaybeItem::Corrupted(header, db) => {
let next_address = header.next_item_address::<S>(found_item_address);
self.next_address = if next_address >= page_data_end_address {
NextAddress::PageAfter(current_page)
} else {
NextAddress::Address(next_address)
};
data_buffer.replace(db);
}
item::MaybeItem::Erased(_, _) => unreachable!("Item is already erased"),
item::MaybeItem::Present(item) => {
let next_address = item.header.next_item_address::<S>(found_item_address);
self.next_address = if next_address >= page_data_end_address {
NextAddress::PageAfter(current_page)
} else {
NextAddress::Address(next_address)
};
// Return the item we found
self.cache.unmark_dirty();
return Ok(Some((item.unborrow(), found_item_address)));
}
}
} else {
self.next_address = NextAddress::PageAfter(current_page);
}
}
}
}
/// An entry in the iteration over the queue flash
pub struct QueueIteratorEntry<'s, 'd, 'q, S: NorFlash, CI: CacheImpl> {
iter: &'q mut QueueIterator<'s, S, CI>,
address: u32,
item: Item<'d>,
}
impl<'s, 'd, 'q, S: NorFlash, CI: CacheImpl> Deref for QueueIteratorEntry<'s, 'd, 'q, S, CI> {
type Target = [u8];
fn deref(&self) -> &Self::Target {
self.item.data()
}
}
impl<'s, 'd, 'q, S: NorFlash, CI: CacheImpl> DerefMut for QueueIteratorEntry<'s, 'd, 'q, S, CI> {
fn deref_mut(&mut self) -> &mut Self::Target {
self.item.data_mut()
}
}
impl<'s, 'd, 'q, S: NorFlash, CI: CacheImpl> QueueIteratorEntry<'s, 'd, 'q, S, CI> {
/// Get a mutable reference to the data of this entry, but consume the entry too.
/// This function has some relaxed lifetime constraints compared to the deref impls.
pub fn into_buf(self) -> &'d mut [u8] {
let (header, data) = self.item.destruct();
&mut data[..header.length as usize]
}
/// Pop the data in flash that corresponds to this entry. This makes it so
/// future peeks won't find this data anymore.
pub async fn pop(self) -> Result<&'d mut [u8], Error<S::Error>>
where
S: MultiwriteNorFlash,
{
let (header, data_buffer) = self.item.destruct();
let ret = &mut data_buffer[..header.length as usize];
header
.erase_data(
self.iter.flash,
self.iter.flash_range.clone(),
&mut self.iter.cache,
self.address,
)
.await?;
self.iter.cache.unmark_dirty();
Ok(ret)
}
}
/// Find the largest size of data that can be stored.
///
/// This will read through the entire flash to find the largest chunk of
/// data that can be stored, taking alignment requirements of the item into account.
///
/// If there is no space left, `None` is returned.
pub async fn find_max_fit<S: NorFlash>(
flash: &mut S,
flash_range: Range<u32>,
cache: &mut impl CacheImpl,
) -> Result<Option<u32>, Error<S::Error>> {
run_with_auto_repair!(
function = find_max_fit_inner(flash, flash_range.clone(), cache).await,
repair = try_repair(flash, flash_range.clone(), cache).await?
)
}
async fn find_max_fit_inner<S: NorFlash>(
flash: &mut S,
flash_range: Range<u32>,
cache: &mut impl CacheImpl,
) -> Result<Option<u32>, Error<S::Error>> {
assert_eq!(flash_range.start % S::ERASE_SIZE as u32, 0);
assert_eq!(flash_range.end % S::ERASE_SIZE as u32, 0);
assert!(S::ERASE_SIZE >= S::WORD_SIZE * 4);
assert!(S::WORD_SIZE <= MAX_WORD_SIZE);
if cache.is_dirty() {
cache.invalidate_cache_state();
}
let current_page = find_youngest_page(flash, flash_range.clone(), cache).await?;
// Check if we have space on the next page
let next_page = next_page::<S>(flash_range.clone(), current_page);
match get_page_state(flash, flash_range.clone(), cache, next_page).await? {
state @ PageState::Closed => {
if is_page_empty(flash, flash_range.clone(), cache, next_page, Some(state)).await? {
cache.unmark_dirty();
return Ok(Some((S::ERASE_SIZE - (2 * S::WORD_SIZE)) as u32));
}
}
PageState::Open => {
cache.unmark_dirty();
return Ok(Some((S::ERASE_SIZE - (2 * S::WORD_SIZE)) as u32));
}
PageState::PartialOpen => {
// This should never happen
return Err(Error::Corrupted {
#[cfg(feature = "_test")]
backtrace: std::backtrace::Backtrace::capture(),
});
}
};
// See how much space we can find in the current page.
let page_data_start_address =
calculate_page_address::<S>(flash_range.clone(), current_page) + S::WORD_SIZE as u32;
let page_data_end_address =
calculate_page_end_address::<S>(flash_range.clone(), current_page) - S::WORD_SIZE as u32;
let next_item_address = match cache.first_item_after_written(current_page) {
Some(next_item_address) => next_item_address,
None => {
ItemHeaderIter::new(
cache
.first_item_after_erased(current_page)
.unwrap_or(page_data_start_address),
page_data_end_address,
)
.traverse(flash, |_, _| true)
.await?
.1
}
};
cache.unmark_dirty();
Ok(ItemHeader::available_data_bytes::<S>(
page_data_end_address - next_item_address,
))
}
/// Calculate how much space is left free in the queue (in bytes).
///
/// The number given back is accurate, however there are lots of things that add overhead and padding.
/// Every push is an item with its own overhead. You can check the overhead per item with [crate::item_overhead_size].
///
/// Furthermore, every item has to fully fit in a page. So if a page has 50 bytes left and you push an item of 60 bytes,
/// the current page is closed and the item is stored on the next page, 'wasting' the 50 you had.
///
/// So unless you're tracking all this, the returned number should only be used as a rough indication.
pub async fn space_left<S: NorFlash>(
flash: &mut S,
flash_range: Range<u32>,
cache: &mut impl CacheImpl,
) -> Result<u32, Error<S::Error>> {
run_with_auto_repair!(
function = space_left_inner(flash, flash_range.clone(), cache).await,
repair = try_repair(flash, flash_range.clone(), cache).await?
)
}
async fn space_left_inner<S: NorFlash>(
flash: &mut S,
flash_range: Range<u32>,
cache: &mut impl CacheImpl,
) -> Result<u32, Error<S::Error>> {
assert_eq!(flash_range.start % S::ERASE_SIZE as u32, 0);
assert_eq!(flash_range.end % S::ERASE_SIZE as u32, 0);
assert!(S::ERASE_SIZE >= S::WORD_SIZE * 4);
assert!(S::WORD_SIZE <= MAX_WORD_SIZE);
if cache.is_dirty() {
cache.invalidate_cache_state();
}
let mut total_free_space = 0;
for page in get_pages::<S>(flash_range.clone(), 0) {
let state = get_page_state(flash, flash_range.clone(), cache, page).await?;
let page_empty =
is_page_empty(flash, flash_range.clone(), cache, page, Some(state)).await?;
if state.is_closed() && !page_empty {
continue;
}
// See how much space we can find in the current page.
let page_data_start_address =
calculate_page_address::<S>(flash_range.clone(), page) + S::WORD_SIZE as u32;
let page_data_end_address =
calculate_page_end_address::<S>(flash_range.clone(), page) - S::WORD_SIZE as u32;
if page_empty {
total_free_space += page_data_end_address - page_data_start_address;
continue;
}
// Partial open page
let next_item_address = match cache.first_item_after_written(page) {
Some(next_item_address) => next_item_address,
None => {
ItemHeaderIter::new(
cache
.first_item_after_erased(page)
.unwrap_or(page_data_start_address),
page_data_end_address,
)
.traverse(flash, |_, _| true)
.await?
.1
}
};
if ItemHeader::available_data_bytes::<S>(page_data_end_address - next_item_address)
.is_none()
{
// No data fits on this partial open page anymore.
// So if all data on this is already erased, then this page might as well be counted as empty.
// We can use [is_page_empty] and lie to to it so it checks the items.
if is_page_empty(
flash,
flash_range.clone(),
cache,
page,
Some(PageState::Closed),
)
.await?
{
total_free_space += page_data_end_address - page_data_start_address;
continue;
}
}
total_free_space += page_data_end_address - next_item_address;
}
cache.unmark_dirty();
Ok(total_free_space)
}
async fn find_youngest_page<S: NorFlash>(
flash: &mut S,
flash_range: Range<u32>,
cache: &mut impl PrivateCacheImpl,
) -> Result<usize, Error<S::Error>> {
let last_used_page =
find_first_page(flash, flash_range.clone(), cache, 0, PageState::PartialOpen).await?;
if let Some(last_used_page) = last_used_page {
return Ok(last_used_page);
}
// We have no partial open page. Search for an open page to start in
let first_open_page = find_first_page(flash, flash_range, cache, 0, PageState::Open).await?;
if let Some(first_open_page) = first_open_page {
return Ok(first_open_page);
}
// All pages are closed... This is not correct.
Err(Error::Corrupted {
#[cfg(feature = "_test")]
backtrace: std::backtrace::Backtrace::capture(),
})
}
async fn find_oldest_page<S: NorFlash>(
flash: &mut S,
flash_range: Range<u32>,
cache: &mut impl PrivateCacheImpl,
) -> Result<usize, Error<S::Error>> {
let youngest_page = find_youngest_page(flash, flash_range.clone(), cache).await?;
// The oldest page is the first non-open page after the youngest page
let oldest_closed_page =
find_first_page(flash, flash_range, cache, youngest_page, PageState::Closed).await?;
Ok(oldest_closed_page.unwrap_or(youngest_page))
}
/// Try to repair the state of the flash to hopefull get back everything in working order.
/// Care is taken that no data is lost, but this depends on correctly repairing the state and
/// so is only best effort.
///
/// This function might be called after a different function returned the [Error::Corrupted] error.
/// There's no guarantee it will work.
///
/// If this function or the function call after this crate returns [Error::Corrupted], then it's unlikely
/// that the state can be recovered. To at least make everything function again at the cost of losing the data,
/// erase the flash range.
async fn try_repair<S: NorFlash>(
flash: &mut S,
flash_range: Range<u32>,
cache: &mut impl CacheImpl,
) -> Result<(), Error<S::Error>> {
cache.invalidate_cache_state();
crate::try_general_repair(flash, flash_range.clone(), cache).await?;
Ok(())
}
#[cfg(test)]
mod tests {
use crate::mock_flash::{FlashAverageStatsResult, FlashStatsResult, WriteCountCheck};
use super::*;
use futures_test::test;
type MockFlashBig = mock_flash::MockFlashBase<4, 4, 256>;
type MockFlashTiny = mock_flash::MockFlashBase<2, 1, 32>;
#[test]
async fn peek_and_overwrite_old_data() {
let mut flash = MockFlashTiny::new(WriteCountCheck::Twice, None, true);
const FLASH_RANGE: Range<u32> = 0x00..0x40;
let mut data_buffer = AlignedBuf([0; 1024]);
const DATA_SIZE: usize = 22;
assert_eq!(
space_left(&mut flash, FLASH_RANGE, &mut cache::NoCache::new())
.await
.unwrap(),
60
);
assert_eq!(
peek(
&mut flash,
FLASH_RANGE,
&mut cache::NoCache::new(),
&mut data_buffer
)
.await
.unwrap(),
None
);
data_buffer[..DATA_SIZE].copy_from_slice(&[0xAA; DATA_SIZE]);
push(
&mut flash,
FLASH_RANGE,
&mut cache::NoCache::new(),
&data_buffer[..DATA_SIZE],
false,
)
.await
.unwrap();
assert_eq!(
space_left(&mut flash, FLASH_RANGE, &mut cache::NoCache::new())
.await
.unwrap(),
30
);
assert_eq!(
peek(
&mut flash,
FLASH_RANGE,
&mut cache::NoCache::new(),
&mut data_buffer
)
.await
.unwrap()
.unwrap(),
&[0xAA; DATA_SIZE]
);
data_buffer[..DATA_SIZE].copy_from_slice(&[0xBB; DATA_SIZE]);
push(
&mut flash,
FLASH_RANGE,
&mut cache::NoCache::new(),
&data_buffer[..DATA_SIZE],
false,
)
.await
.unwrap();
assert_eq!(
space_left(&mut flash, FLASH_RANGE, &mut cache::NoCache::new())
.await
.unwrap(),
0
);
assert_eq!(
peek(
&mut flash,
FLASH_RANGE,
&mut cache::NoCache::new(),
&mut data_buffer
)
.await
.unwrap()
.unwrap(),
&[0xAA; DATA_SIZE]
);
// Flash is full, this should fail
data_buffer[..DATA_SIZE].copy_from_slice(&[0xCC; DATA_SIZE]);
push(
&mut flash,
FLASH_RANGE,
&mut cache::NoCache::new(),
&data_buffer[..DATA_SIZE],
false,
)
.await
.unwrap_err();
// Now we allow overwrite, so it should work
data_buffer[..DATA_SIZE].copy_from_slice(&[0xDD; DATA_SIZE]);
push(
&mut flash,
FLASH_RANGE,
&mut cache::NoCache::new(),
&data_buffer[..DATA_SIZE],
true,
)
.await
.unwrap();
assert_eq!(
peek(
&mut flash,
FLASH_RANGE,
&mut cache::NoCache::new(),
&mut data_buffer
)
.await
.unwrap()
.unwrap(),
&[0xBB; DATA_SIZE]
);
assert_eq!(
pop(
&mut flash,
FLASH_RANGE,
&mut cache::NoCache::new(),
&mut data_buffer
)
.await
.unwrap()
.unwrap(),
&[0xBB; DATA_SIZE]
);
assert_eq!(
space_left(&mut flash, FLASH_RANGE, &mut cache::NoCache::new())
.await
.unwrap(),
30
);
assert_eq!(
peek(
&mut flash,
FLASH_RANGE,
&mut cache::NoCache::new(),
&mut data_buffer
)
.await
.unwrap()
.unwrap(),
&[0xDD; DATA_SIZE]
);
assert_eq!(
pop(
&mut flash,
FLASH_RANGE,
&mut cache::NoCache::new(),
&mut data_buffer
)
.await
.unwrap()
.unwrap(),
&[0xDD; DATA_SIZE]
);
assert_eq!(
space_left(&mut flash, FLASH_RANGE, &mut cache::NoCache::new())
.await
.unwrap(),
60
);
assert_eq!(
peek(
&mut flash,
FLASH_RANGE,
&mut cache::NoCache::new(),
&mut data_buffer
)
.await
.unwrap(),
None
);
assert_eq!(
pop(
&mut flash,
FLASH_RANGE,
&mut cache::NoCache::new(),
&mut data_buffer
)
.await
.unwrap(),
None
);
}
#[test]
async fn push_pop() {
let mut flash = MockFlashBig::new(WriteCountCheck::Twice, None, true);
let flash_range = 0x000..0x1000;
let mut data_buffer = AlignedBuf([0; 1024]);
for i in 0..2000 {
println!("{i}");
let data = vec![i as u8; i % 512 + 1];
push(
&mut flash,
flash_range.clone(),
&mut cache::NoCache::new(),
&data,
true,
)
.await
.unwrap();
assert_eq!(
peek(
&mut flash,
flash_range.clone(),
&mut cache::NoCache::new(),
&mut data_buffer
)
.await
.unwrap()
.unwrap(),
&data,
"At {i}"
);
assert_eq!(
pop(
&mut flash,
flash_range.clone(),
&mut cache::NoCache::new(),
&mut data_buffer
)
.await
.unwrap()
.unwrap(),
&data,
"At {i}"
);