-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
62 lines (48 loc) · 1.62 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from contextlib import asynccontextmanager
from typing import AsyncGenerator
from fastapi import FastAPI
from loguru import logger
from routes import chat, embedding
from configs.configs import settings
from dependencies import ml_models, embed_models
from dependencies import load_model, load_embedder
from huggingface_hub import login
login(token=settings.HUGGINGFACE_KEY)
@asynccontextmanager
async def lifespan(app: FastAPI) -> AsyncGenerator[None, None]:
"""
Lifespan context manager for FastAPI app lifecycle.
Initializes the ML model, tokenizer, embedder, and embed tokenizer
when the app starts and cleans up resources when the app stops.
Args:
app (FastAPI): The FastAPI application instance.
Yields:
None: Execution will be paused to maintain lifespan context.
"""
# Load the model and tokenizer
load_model(settings.MODEL_NAME)
load_embedder(settings.EMB_MODEL_NAME)
# Maintain context
yield
# Clean up after app shutdown
ml_models.clear()
logger.info("ml_models cleared.")
embed_models.clear()
logger.info("embed_models cleared.")
# Initialize FastAPI app
app = FastAPI(
title="Model Serving API",
description="API for generating and streaming model outputs.",
lifespan=lifespan
)
app.include_router(chat.router)
app.include_router(embedding.router)
@app.get("/")
async def root():
return {"message": "Hello, World!"}
# ==========================
# Main Server Run
# ==========================
# if __name__ == "__main__":
# # Start the FastAPI app using uvicorn
# uvicorn.run("main:app", host="0.0.0.0", port=8001)