-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model.py
43 lines (30 loc) · 1.3 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from random import random
import pandas as pd
import pickle
import argparse
from sklearn.model_selection import train_test_split
from pydoop import hdfs
from sklearn.ensemble import RandomForestClassifier
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--input', type=str, required=True)
parser.add_argument('--output', type=str, required=True)
args = parser.parse_args()
return args
def train_model(data_input, model_output):
with hdfs.open(data_input) as f:
df = pd.read_csv(f)
X, y = df.drop(columns=['rating', 'review_id']).values, df['rating'].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=1)
model = RandomForestClassifier(n_estimators=600, max_depth=12, class_weight='balanced_subsample')
model.fit(X_train, y_train)
score_train = model.score(X_train, y_train)
score_test = model.score(X_test, y_test)
print('Train accuracy: {}%'.format(score_train * 100))
print('Test accuracy: {}%'.format(score_test * 100))
with open(model_output, 'wb') as f:
pickle.dump(model, f, pickle.HIGHEST_PROTOCOL)
return score_train * 100, score_test * 100
if __name__ == '__main__':
args = parse_arguments()
train_model(args.input, args.output)