-
Notifications
You must be signed in to change notification settings - Fork 0
/
fid.py
262 lines (206 loc) · 9.99 KB
/
fid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os
import csv
import pickle
import random
import numpy as np
from glob import glob
from PIL import Image
from scipy import linalg
from collections import defaultdict
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
import torch
import torchvision.transforms as TF
from torch.nn.functional import adaptive_avg_pool2d
try:
from tqdm import tqdm
except ImportError:
# If tqdm is not available, provide a mock version of it
def tqdm(x):
return x
from classifier.densenet import DenseNet
from inception_fid import InceptionV3
import torchxrayvision as xrv
import skimage
from vae import VQGanVAE
import albumentations.pytorch
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument('--gt_path', type=str, default=None, help='path to the original image path')
parser.add_argument('--gen_path', type=str, default=None, help='path to the generated image path')
parser.add_argument('--codebook_indices', type=str, default='mimiccxr_vqgan/last.ckpt', help='path to the codebook indices path')
parser.add_argument('--vagan', type=str, default='mimiccxr_vqgan/last.ckpt', help='path to the vqgan model path')
parser.add_argument('--vagan_config', type=str, default='mimiccxr_vqgan/last.ckpt', help='path to the vqgam config path')
parser.add_argument('--dims', type=int, default=1024, help='Batch size to use')
parser.add_argument('--batch-size', type=int, default=50, help='Batch size to use')
parser.add_argument('--num-workers', type=int, help=('Number of processes to use for data loading. Defaults to `min(8, num_cpus)`'))
parser.add_argument('--device', type=str, default=None, help='Device to use. Like cuda, cuda:0 or cpu')
IMAGE_EXTENSIONS = {'bmp', 'jpg', 'jpeg', 'pgm', 'png', 'ppm',
'tif', 'tiff', 'webp'}
device = torch.device('cuda' if (torch.cuda.is_available()) else 'cpu')
class ImagePathDataset(torch.utils.data.Dataset):
def __init__(self, args, files, transforms=None):
self.files = files
self.transforms = transforms
with open(args.codebook_indices, 'rb') as f:
self.indices_dict = pickle.load(f)
vqgan_model_path = args.vqgan
vqgan_config_path = args.vqgan_config
self.vae = VQGanVAE(vqgan_model_path, vqgan_config_path) # .to(device)
IMG_SIZE = self.vae.image_size
rescaler = albumentations.SmallestMaxSize(max_size=IMG_SIZE)
cropper = albumentations.CenterCrop(height=IMG_SIZE, width=IMG_SIZE)
# totensor = albumentations.pytorch.transforms.ToTensorV2()
self.image_transform = albumentations.Compose([
rescaler,
cropper,
# totensor
])
def __len__(self):
return len(self.files)
def __getitem__(self, i):
path = self.files[i]
img = skimage.io.imread(path)
img = xrv.datasets.normalize(img, 255) # convert 8-bit image to [-1024, 1024] range
if len(img.shape) == 3:
img = img.mean(2)[None, ...] # Make single color channel
else:
img = img[None, ...]
transform = TF.Compose([xrv.datasets.XRayCenterCrop(), xrv.datasets.XRayResizer(224)])
img = transform(img)
img = torch.from_numpy(img)
return img
def get_activations(args, files, model, batch_size=50, dims=2048, device='cpu', num_workers=1):
"""Calculates the activations of the pool_3 layer for all images.
Params:
-- files : List of image files paths
-- model : Instance of inception model
-- batch_size : Batch size of images for the model to process at once.
Make sure that the number of samples is a multiple of
the batch size, otherwise some samples are ignored. This
behavior is retained to match the original FID score
implementation.
-- dims : Dimensionality of features returned by Inception
-- device : Device to run calculations
-- num_workers : Number of parallel dataloader workers
Returns:
-- A numpy array of dimension (num images, dims) that contains the
activations of the given tensor when feeding inception with the
query tensor.
"""
model.eval()
print('total len of files:', len(files))
if batch_size > len(files):
print(('Warning: batch size is bigger than the data size. '
'Setting batch size to data size'))
batch_size = len(files)
dataset = ImagePathDataset(args, files, transforms=TF.ToTensor())
dataloader = torch.utils.data.DataLoader(dataset,
batch_size=batch_size,
shuffle=False,
drop_last=False,
num_workers=num_workers)
pred_arr = np.empty((len(files), dims))
start_idx = 0
with torch.no_grad():
for batch in tqdm(dataloader):
batch = batch.to(device)
with torch.no_grad():
pred = model.features(batch)
if pred.size(2) != 1 or pred.size(3) != 1:
pred = adaptive_avg_pool2d(pred, output_size=(1, 1))
pred = pred.squeeze(3).squeeze(2).cpu().numpy()
pred_arr[start_idx:start_idx + pred.shape[0]] = pred
start_idx = start_idx + pred.shape[0]
return pred_arr
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
"""Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Dougal J. Sutherland.
Params:
-- mu1 : Numpy array containing the activations of a layer of the
inception net (like returned by the function 'get_predictions')
for generated samples.
-- mu2 : The sample mean over activations, precalculated on an
representative data set.
-- sigma1: The covariance matrix over activations for generated samples.
-- sigma2: The covariance matrix over activations, precalculated on an
representative data set.
Returns:
-- : The Frechet Distance.
"""
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, \
'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, \
'Training and test covariances have different dimensions'
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ('fid calculation produces singular product; '
'adding %s to diagonal of cov estimates') % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return (diff.dot(diff) + np.trace(sigma1)
+ np.trace(sigma2) - 2 * tr_covmean)
def calculate_activation_statistics(args, files, model, batch_size=50, dims=2048,
device='cpu', num_workers=1):
"""Calculation of the statistics used by the FID.
Params:
-- files : List of image files paths
-- model : Instance of inception model
-- batch_size : The images numpy array is split into batches with
batch size batch_size. A reasonable batch size
depends on the hardware.
-- dims : Dimensionality of features returned by Inception
-- device : Device to run calculations
-- num_workers : Number of parallel dataloader workers
Returns:
-- mu : The mean over samples of the activations of the pool_3 layer of
the inception model.
-- sigma : The covariance matrix of the activations of the pool_3 layer of
the inception model.
"""
act = get_activations(args, files, model, batch_size, dims, device, num_workers)
mu = np.mean(act, axis=0)
sigma = np.cov(act, rowvar=False)
return mu, sigma
def compute_statistics_of_path(args, path, model, batch_size, dims, device, num_workers):
m, s = calculate_activation_statistics(args, path, model, batch_size, dims, device, num_workers)
return m, s
def calculate_fid_given_paths(args, gt_path, gen_path, batch_size, device, dims, num_workers=1):
"""Calculates the FID of two paths"""
model = xrv.models.DenseNet(weights="densenet121-res224-all").to(device)
m1, s1 = compute_statistics_of_path(args, gt_path, model, batch_size, dims, device, num_workers)
m2, s2 = compute_statistics_of_path(args, gen_path, model, batch_size, dims, device, num_workers)
fid_value = calculate_frechet_distance(m1, s1, m2, s2)
return fid_value
def main():
args = parser.parse_args()
set_seed(123)
gt_files = glob(args.gt_path)
gen_files = glob(args.gt_path)
fid_value = calculate_fid_given_paths(args, gt_files, gen_files, args.batch_size, device, args.dims, num_workers)
print('FID: ', round(fid_value, 3))
if __name__ == '__main__':
main()