-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathutils.py
197 lines (164 loc) · 5.87 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# coding:utf-8
# from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import torch
import numpy as np
import glob
import shutil
import os
import colorlog
import random
import six
from six.moves import cPickle
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
def match_name_keywords(n, name_keywords):
out = False
for b in name_keywords:
if b in n:
out = True
break
return out
def decide_two_stage(transformer_input_type, dt, criterion):
if transformer_input_type == 'gt_proposals':
two_stage = True
proposals = dt['gt_boxes']
proposals_mask = dt['gt_boxes_mask']
criterion.matcher.cost_caption = 0
for q_k in ['loss_length', 'loss_ce', 'loss_bbox', 'loss_giou']:
for key in criterion.weight_dict.keys():
if q_k in key:
criterion.weight_dict[key] = 0
disable_iterative_refine = True
elif transformer_input_type == 'queries': #
two_stage = False
proposals = None
proposals_mask = None
disable_iterative_refine = False
else:
raise ValueError('Wrong value of transformer_input_type, got {}'.format(transformer_input_type))
return two_stage, disable_iterative_refine, proposals, proposals_mask
def pickle_load(f):
""" Load a pickle.
Parameters
----------
f: file-like object
"""
if six.PY3:
return cPickle.load(f, encoding='latin-1')
else:
return cPickle.load(f)
def pickle_dump(obj, f):
""" Dump a pickle.
Parameters
----------
obj: pickled object
f: file-like object
"""
if six.PY3:
return cPickle.dump(obj, f, protocol=2)
else:
return cPickle.dump(obj, f)
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
def update_values(dict_from, dict_to):
for key, value in dict_from.items():
if key not in dict_to.keys():
raise AssertionError('key mismatching: {}'.format(key))
if isinstance(value, dict):
update_values(dict_from[key], dict_to[key])
elif value is not None:
dict_to[key] = dict_from[key]
def print_opt(opt, model, logger):
print_alert_message('All args:', logger)
for key, item in opt._get_kwargs():
logger.info('{} = {}'.format(key, item))
print_alert_message('Model structure:', logger)
logger.info(model)
def build_floder(opt):
if opt.start_from:
print('Start training from id:{}'.format(opt.start_from))
save_folder = os.path.join(opt.save_dir, opt.start_from)
assert os.path.exists(save_folder)
else:
if not os.path.exists(opt.save_dir):
os.mkdir(opt.save_dir)
save_folder = os.path.join(opt.save_dir, opt.id)
if os.path.exists(save_folder):
# wait_flag = input('Warning! ID {} already exists, rename it? (Y/N) : '.format(opt.id))
wait_flag = 'Y'
if wait_flag in ['Y', 'y']:
opt.id = opt.id + '_v_{}'.format(time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()))
save_folder = os.path.join(opt.save_dir, opt.id)
print('Rename opt.id as "{}".'.format(opt.id))
else:
raise AssertionError('ID already exists, folder {} exists'.format(save_folder))
print('Results folder "{}" does not exist, creating folder...'.format(save_folder))
os.mkdir(save_folder)
os.mkdir(os.path.join(save_folder, 'prediction'))
return save_folder
def backup_envir(save_folder):
backup_folders = ['cfgs', 'misc', 'models']
# backup_folders = ['models']
backup_files = glob.glob('./*.py')
for folder in backup_folders:
shutil.copytree(folder, os.path.join(save_folder, 'backup', folder))
for file in backup_files:
shutil.copyfile(file, os.path.join(save_folder, 'backup', file))
def create_logger(folder, filename):
log_colors = {
'DEBUG': 'blue',
'INFO': 'white',
'WARNING': 'green',
'ERROR': 'red',
'CRITICAL': 'yellow',
}
import logging
logger = logging.getLogger('DVC')
# %(filename)s$RESET:%(lineno)d
# LOGFORMAT = "%(log_color)s%(asctime)s [%(log_color)s%(filename)s:%(lineno)d] | %(log_color)s%(message)s%(reset)s |"
LOGFORMAT = ""
LOG_LEVEL = logging.DEBUG
logging.root.setLevel(LOG_LEVEL)
stream = logging.StreamHandler()
stream.setLevel(LOG_LEVEL)
stream.setFormatter(colorlog.ColoredFormatter(LOGFORMAT, datefmt='%d %H:%M', log_colors=log_colors))
# print to log file
hdlr = logging.FileHandler(os.path.join(folder, filename))
hdlr.setLevel(LOG_LEVEL)
# hdlr.setFormatter(logging.Formatter("[%(asctime)s] %(message)s"))
hdlr.setFormatter(logging.Formatter("%(message)s"))
logger.addHandler(hdlr)
logger.addHandler(stream)
return logger
def print_alert_message(str, logger=None):
msg = '*' * 20 + ' ' + str + ' ' + '*' * (58 - len(str))
if logger:
logger.info('\n\n' + msg)
else:
print(msg)
def set_lr(optimizer, lr):
for group in optimizer.param_groups:
group['lr'] = lr
def clip_gradient(optimizer, grad_clip):
for group in optimizer.param_groups:
for i, param in enumerate(group['params']):
if param.grad is not None:
param.grad.data.clamp_(-grad_clip, grad_clip)
if __name__ == '__main__':
# import opts
#
# info = {'opt': vars(opts.parse_opts()),
# 'loss': {'tap_loss': 0, 'tap_reg_loss': 0, 'tap_conf_loss': 0, 'lm_loss': 0}}
# record_this_run_to_csv(info, 'save/results_all_runs.csv')
logger = create_logger('./', 'mylogger.log')
logger.info('debug')
logger.info('test2')