forked from bcaffo/Caffo-Coursera
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lecture7.tex
324 lines (290 loc) · 10.1 KB
/
lecture7.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
\documentclass[aspectratio=169]{beamer}
\mode<presentation>
% \usetheme{Warsaw}
% \usetheme{Goettingen}
\usetheme{Hannover}
% \useoutertheme{default}
% \useoutertheme{infolines}
\useoutertheme{sidebar}
\usecolortheme{dolphin}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{enumerate}
% some bold math symbosl
\newcommand{\Cov}{\mathrm{Cov}}
\newcommand{\Cor}{\mathrm{Cor}}
\newcommand{\Var}{\mathrm{Var}}
\newcommand{\brho}{\boldsymbol{\rho}}
\newcommand{\bSigma}{\boldsymbol{\Sigma}}
\newcommand{\btheta}{\boldsymbol{\theta}}
\newcommand{\bbeta}{\boldsymbol{\beta}}
\newcommand{\bmu}{\boldsymbol{\mu}}
\newcommand{\bW}{\mathbf{W}}
\newcommand{\one}{\mathbf{1}}
\newcommand{\bH}{\mathbf{H}}
\newcommand{\by}{\mathbf{y}}
\newcommand{\bolde}{\mathbf{e}}
\newcommand{\bx}{\mathbf{x}}
\newcommand{\cpp}[1]{\texttt{#1}}
\title{Mathematical Biostatistics Boot Camp: Lecture 7, Some Common Distributions}
\author{Brian Caffo}
\date{\today}
\institute[Department of Biostatistics]{
Department of Biostatistics \\
Johns Hopkins Bloomberg School of Public Health\\
Johns Hopkins University
}
\begin{document}
\frame{\titlepage}
\section{Table of contents}
\frame{
\frametitle{Table of contents}
\tableofcontents
}
\section{The Bernoulli distribution}
\begin{frame}\frametitle{The Bernoulli distribution}
\begin{itemize}
\item The {\bf Bernoulli distribution} arises as the result of a
binary outcome
\item Bernoulli random variables take (only) the values 1 and 0 with
probabilities of (say) $p$ and $1-p$ respectively
\item The PMF for a Bernoulli random variable $X$ is
$$P(X = x) = p^x (1 - p)^{1 - x}$$
\item The mean of a Bernoulli random variable is $p$ and the variance
is $p(1 - p)$
\item If we let $X$ be a Bernoulli random variable, it is typical to
call $X=1$ as a ``success'' and $X=0$ as a ``failure''
\end{itemize}
\end{frame}
\begin{frame}\frametitle{iid Bernoulli trials}
\begin{itemize}
\item If several iid Bernoulli observations, say $x_1,\ldots, x_n$, are observed the
likelihood is
$$
\prod_{i=1}^n p^{x_i} (1 - p)^{1 - x_i} = p^{\sum x_i} (1 - p)^{n - \sum x_i}
$$
\item Notice that the likelihood depends only on the sum of the $x_i$
\item Because $n$ is fixed and assumed known, this implies that the
sample proportion $\sum_i x_i / n$ contains all of the relevant
information about $p$
\item We can maximize the Bernoulli likelihood over $p$ to obtain that
$\hat p = \sum_i x_i / n$ is the maximum likelihood estimator for $p$
\end{itemize}
\end{frame}
\begin{frame}
\includegraphics[width=4.5in]{bernoulliLikelihood.pdf}
\end{frame}
\section{Binomial trials}
\begin{frame}\frametitle{Binomial trials}
\begin{itemize}
\item The {\bf binomial random variables} are obtained as the sum of iid Bernoulli trials
\item In specific, let $X_1,\ldots,X_n$ be iid Bernoulli$(p)$; then $X = \sum_{i=1}^n X_i$
is a binomial random variable
\item The binomial mass function is
$$
P(X = x) =
\left(
\begin{array}{c}
n \\ x
\end{array}
\right)
p^x(1 - p)^{n-x}
$$
for $x=0,\ldots,n$
\end{itemize}
\end{frame}
\begin{frame}
\begin{itemize}
\item Recall that the notation
$$\left(
\begin{array}{c}
n \\ x
\end{array}
\right) = \frac{n!}{x!(n-x)!}
$$ (read ``$n$ choose $x$'') counts the number of ways of selecting $x$ items out of $n$
without replacement disregarding the order of the items
\item
$$\left(
\begin{array}{c}
n \\ 0
\end{array}
\right) =
\left(
\begin{array}{c}
n \\ n
\end{array}
\right) = 1
$$
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Example justification of the binomial likelihood}
\begin{itemize}
\item Consider the probability of getting $6$ heads out of $10$ coin flips from
a coin with success probability $p$
\item The probability of getting $6$ heads and $4$ tails in any specific
order is
$$
p^6(1-p)^4
$$
\item There are
$$\left(
\begin{array}{c}
10 \\ 6
\end{array}
\right)
$$
possible orders of $6$ heads and $4$ tails
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Example}
\begin{itemize}
\item Suppose a friend has $8$ children, $7$ of which are girls and none are twins
\item If each gender has an independent $50$\% probability for each birth, what's the probability
of getting $7$ or more girls out of $8$ births?
$$\left(
\begin{array}{c}
8 \\ 7
\end{array}
\right) .5^{7}(1-.5)^{1}
+
\left(
\begin{array}{c}
8 \\ 8
\end{array}
\right) .5^{8}(1-.5)^{0} \approx 0.04
$$
\item This calculation is an example of a Pvalue - the probability
under a null hypothesis of getting a result as extreme or more
extreme than the one actually obtained
\end{itemize}
\end{frame}
\begin{frame}
\includegraphics[height=3.5in]{birthLikelihood.pdf}
\end{frame}
\section{The normal distribution}
\begin{frame}\frametitle{The normal distribution}
\begin{itemize}
\item A random variable is said to follow a {\bf normal} or {\bf
Gaussian} distribution with mean $\mu$ and variance $\sigma^2$ if
the associated density is
$$
(2\pi \sigma^2)^{-1/2}e^{-(x - \mu)^2/2\sigma^2}
$$
If $X$ a RV with this density then $E[X] = \mu$ and $\Var(X) = \sigma^2$
\item We write $X\sim \mbox{N}(\mu, \sigma^2)$
\item When $\mu = 0$ and $\sigma = 1$ the resulting distribution is
called {\bf the standard normal distribution}
\item The standard normal density function is labeled $\phi$
\item Standard normal RVs are often labeled $Z$
\end{itemize}
\end{frame}
\begin{frame}
\includegraphics[height=3.5in]{stdNormal.pdf}
\end{frame}
\subsection{Properties}
\begin{frame}\frametitle{Facts about the normal density}
\begin{itemize}
\item If $X \sim \mbox{N}(\mu,\sigma^2)$ the $Z = \frac{X -\mu}{\sigma}$ is standard normal
\item If $Z$ is standard normal $$X = \mu + \sigma Z \sim \mbox{N}(\mu, \sigma^2)$$
\item The non-standard normal density is $$\phi\{(x - \mu) / \sigma\}/\sigma$$
\end{itemize}
\end{frame}
\begin{frame}\frametitle{More facts about the normal density}
\begin{enumerate}
\item Approximately $68\%$, $95\%$ and $99\%$ of the normal density lies within
$1$, $2$ and $3$ standard deviations from the mean, respectively
\item $-1.28$, $-1.645$, $-1.96$ and $-2.33$ are the $10^{th}$, $5^{th}$, $2.5^{th}$ and $1^{st}$
percentiles of the standard normal distribution respectively
\item By symmetry, $1.28$, $1.645$, $1.96$ and $2.33$ are the $90^{th}$,
$95^{th}$, $97.5^{th}$ and $99^{th}$ percentiles of the standard normal
distribution respectively
\end{enumerate}
\end{frame}
\begin{frame}\frametitle{Question}
\begin{itemize}
\item What is the $95^{th}$ percentile of a $N(\mu, \sigma^2)$ distribution?
\item We want the point $x_0$ so that $P(X \leq x_0) = .95$
\begin{eqnarray*}
P(X \leq x_0) & = & P\left(\frac{X - \mu}{\sigma} \leq \frac{x_0 - \mu}{\sigma}\right) \\ \\
& = & P\left(Z \leq \frac{x_0 - \mu}{\sigma}\right) = .95
\end{eqnarray*}
\item Therefore
$$\frac{x_0 - \mu}{\sigma} = 1.645$$
or $x_0 = \mu + \sigma 1.645$
\item In general $x_0 = \mu + \sigma z_0$ where $z_0$ is the appropriate standard normal quantile
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Question}
\begin{itemize}
\item What is the probability that a $\mbox{N}(\mu,\sigma^2)$ RV is 2 standard deviations
above the mean?
\item We want to know
\begin{eqnarray*}
P(X > \mu + 2\sigma) & = &
P\left(\frac{X -\mu}{\sigma} > \frac{\mu + 2\sigma - \mu}{\sigma}\right) \\ \\
& = & P(Z \geq 2 ) \\ \\
& \approx & 2.5\%
\end{eqnarray*}
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Other properties}
\begin{enumerate}
\item The normal distribution is symmetric and peaked about its mean (therefore
the mean, median and mode are all equal)
\item A constant times a normally distributed random variable is also
normally distributed (what is the mean and variance?)
\item Sums of normally distributed random variables are again normally distributed
even if the variables are dependent (what is the mean and variance?)
\item Sample means of normally distributed random variables are again normally distributed
(with what mean and variance?)
\item The square of a {\em standard normal} random variable follows what is
called {\bf chi-squared} distribution
\item The exponent of a normally distributed random variables follows what is
called the {\bf log-normal} distribution
\item As we will see later, many random variables, properly
normalized, {\em limit} to a normal distribution
\end{enumerate}
\end{frame}
\begin{frame}\frametitle{Question}
If $X_i$ are iid $\mbox{N}(\mu, \sigma^2)$ with a known variance, what is the likelihood for $\mu$?
\begin{eqnarray*}
{\cal L}(\mu) & = & \prod_{i=1}^n (2\pi \sigma^2)^{-1/2}\
exp\left\{-(x_i - \mu)^2/2\sigma^2\right\} \\ \\
&\propto & \exp\left\{-\sum_{i=1}^n (x_i - \mu)^2/2\sigma^2\right\} \\ \\
& = & \exp\left\{-\sum_{i=1}^n x_i^2/2\sigma^2 + \mu \sum_{i=1}^n X_i / \sigma^2 - n \mu^2/2\sigma^2\right\}\\
&\propto & \exp\left\{\mu n \bar x / \sigma^2 - n \mu^2/2\sigma^2\right\}
\end{eqnarray*}
Later we will discuss methods for handling the unknown variance
\end{frame}
\subsection{ML estimate of $\mu$}
\begin{frame}\frametitle{Question}
\begin{itemize}
\item If $X_i$ are iid $\mbox{N}(\mu, \sigma^2)$, with known variance what's the ML estimate of $\mu$?
\item We calculated the likelihood for $\mu$ on the previous page, the log likelihood is
$$
\mu n \bar x / \sigma^2 - n \mu^2/2\sigma^2
$$
\item The derivative with respect to $\mu$ is
$$
n \bar x / \sigma^2 - n \mu / \sigma ^ 2 = 0
$$
\item This yields that $\bar x$ is the ml estimate of $\mu$
\item Since this doesn't depend on $\sigma$ it is also the ML estimate with $\sigma$ unknown
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Final thoughts on normal likelihoods}
\begin{itemize}
\item The maximum likelihood estimate for $\sigma^2$ is
$$
\frac{\sum_{i=1}^n (X_i - \bar X)^2}{n}
$$
Which is the biased version of the sample variance
\item The ML estimate of $\sigma$ is simply the square root of this
estimate
\item To do likelihood inference, the bivariate likelihood of
$(\mu, \sigma)$ is difficult to visualize
\item Later, we will discuss methods for constructing likelihoods for
one parameter at a time
\end{itemize}
\end{frame}
\end{document}