-
Notifications
You must be signed in to change notification settings - Fork 33
/
smooth_numbers_generalized.pl
executable file
·111 lines (78 loc) · 1.91 KB
/
smooth_numbers_generalized.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#!/usr/bin/perl
# Daniel "Trizen" Șuteu
# Date: 06 March 2019
# https://github.com/trizen
# Generalized algorithm for generating numbers that are smooth over a set A of primes, below a given limit.
use 5.020;
use warnings;
use experimental qw(signatures);
use Math::GMPz;
use ntheory qw(:all);
sub check_valuation ($n, $p) {
if ($p == 2) {
return valuation($n, $p) < 5;
}
if ($p == 3) {
return valuation($n, $p) < 3;
}
if ($p == 7) {
return valuation($n, $p) < 3;
}
($n % $p) != 0;
}
sub smooth_numbers ($limit, $primes) {
my @h = (1);
foreach my $p (@$primes) {
say "Prime: $p";
foreach my $n (@h) {
if ($n * $p <= $limit and check_valuation($n, $p)) {
push @h, $n * $p;
}
}
}
return \@h;
}
#
# Example for finding numbers `m` such that:
# sigma(m) * phi(m) = n^k
# for some `n` and `k`, with `n > 1` and `k > 1`.
#
# See also: https://oeis.org/A306724
#
sub isok ($n) {
is_power(Math::GMPz->new(divisor_sum($n)) * euler_phi($n));
}
my @smooth_primes;
foreach my $p (@{primes(4801)}) {
if ($p == 2) {
push @smooth_primes, $p;
next;
}
my @f1 = factor($p - 1);
my @f2 = factor($p + 1);
if ($f1[-1] <= 7 and $f2[-1] <= 7) {
push @smooth_primes, $p;
}
}
my $h = smooth_numbers(10**15, \@smooth_primes);
say "\nFound: ", scalar(@$h), " terms";
my %table;
foreach my $n (@$h) {
my $p = isok($n);
if ($p >= 8) {
say "a($p) = $n -> ", join(' * ', map { "$_->[0]^$_->[1]" } factor_exp($n));
push @{$table{$p}}, $n;
}
}
say '';
foreach my $k (sort { $a <=> $b } keys %table) {
say "a($k) <= ", vecmin(@{$table{$k}});
}
__END__
# See: https://oeis.org/A306724
a(8) <= 498892319051
a(9) <= 14467877252479
a(10) <= 421652049419104
a(11) <= 12227909433154016
a(12) <= 377536703748630244
a(13) <= 926952707565364023467