-
Notifications
You must be signed in to change notification settings - Fork 33
/
partial_sums_of_gpf.pl
executable file
·61 lines (47 loc) · 1.14 KB
/
partial_sums_of_gpf.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#!/usr/bin/perl
# Daniel "Trizen" Șuteu
# Date: 20 July 2020
# https://github.com/trizen
# Algorithm with sublinear time for computing:
#
# Sum_{k=2..n} gpf(k)
#
# where:
# gpf(k) = the greatest prime factor of k
# See also:
# https://projecteuler.net/problem=642
use 5.020;
use strict;
use warnings;
use ntheory qw(:all);
use experimental qw(signatures);
sub partial_sums_of_gpf($n) {
my $t = 0;
my $s = sqrtint($n);
forprimes {
$t = addint($t, mulint($_, smooth_count(divint($n, $_), $_)));
} $s;
for(my $p = next_prime($s); $p <= $n; $p = next_prime($p)) {
my $u = divint($n,$p);
my $r = divint($n,$u);
$t = addint($t, mulint($u, sum_primes($p,$r)));
$p = $r;
}
return $t;
}
foreach my $k (1..10) {
printf("S(10^%d) = %s\n", $k, partial_sums_of_gpf(powint(10, $k)));
}
__END__
S(10^1) = 32
S(10^2) = 1915
S(10^3) = 135946
S(10^4) = 10118280
S(10^5) = 793111753
S(10^6) = 64937323262
S(10^7) = 5494366736156
S(10^8) = 476001412898167
S(10^9) = 41985754895017934
S(10^10) = 3755757137823525252
S(10^11) = 339760245382396733607
S(10^12) = 31019315736720796982142