-
Notifications
You must be signed in to change notification settings - Fork 33
/
chernick-carmichael_numbers_below_limit.pl
executable file
·77 lines (57 loc) · 2.15 KB
/
chernick-carmichael_numbers_below_limit.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#!/usr/bin/perl
# Daniel "Trizen" Șuteu
# Date: 22 July 2018
# https://github.com/trizen
# Generate all the extended Chernick's Carmichael numbers below a certain limit.
# OEIS sequences:
# https://oeis.org/A317126
# https://oeis.org/A317136
# See also:
# https://oeis.org/wiki/Carmichael_numbers
# https://www.ams.org/journals/bull/1939-45-04/S0002-9904-1939-06953-X/home.html
use 5.020;
use warnings;
use ntheory qw(:all);
use experimental qw(signatures);
# Generate the factors of a Chernick number, given n
# and m, where n is the number of distinct prime factors.
sub chernick_carmichael_factors ($n, $m) {
(6*$m + 1, 12*$m + 1, (map { (1 << $_) * 9*$m + 1 } 1 .. $n-2));
}
# Check the conditions for an extended Chernick-Carmichael number
sub is_chernick_carmichael ($n, $m) {
($n == 2) ? (is_prime(6*$m + 1) && is_prime(12*$m + 1))
: (is_prime((1 << ($n-2)) * 9*$m + 1) && __SUB__->($n-1, $m));
}
my @terms;
my $limit = 0 + ($ARGV[0] // 10**15);
# Generate terms with k distinct prime factors
for (my $n = 3 ; ; ++$n) {
# We can stop the search when:
# (6*m + 1) * (12*m + 1) * Product_{i=1..n-2} (9 * 2^i * m + 1)
# is greater than the limit, for m=1.
last if vecprod(chernick_carmichael_factors($n, 1)) > $limit;
# Set the multiplier, based on the condition that `m` has to be divisible by 2^(k-4).
my $multiplier = ($n > 4) ? (1 << ($n-4)) : 1;
# Optimization for n > 5
$multiplier *= 5 if ($n > 5);
# Generate the extended Chernick numbers with n distinct prime factors,
# that are also Carmichael numbers, below the limit we're looking for.
for (my $k = 1 ; ; ++$k) {
my $m = $multiplier * $k;
# All factors must be prime
is_chernick_carmichael($n, $m) || next;
# Get the prime factors
my @f = chernick_carmichael_factors($n, $m);
# The product of these primes, gives a Carmichael number
my $c = vecprod(@f);
last if $c > $limit;
push @terms, $c;
}
}
# Sort the terms
my @final_terms = sort { $a <=> $b } @terms;
# Display the terms
foreach my $k (0 .. $#final_terms) {
say($k + 1, ' ', $final_terms[$k]);
}