-
Notifications
You must be signed in to change notification settings - Fork 33
/
faulhaber_s_formula_symbolic.pl
executable file
·62 lines (47 loc) · 1.48 KB
/
faulhaber_s_formula_symbolic.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#!/usr/bin/perl
# Author: Daniel "Trizen" Șuteu
# License: GPLv3
# Date: 10 February 2016
# Website: https://github.com/trizen
# The script generates formulas for calculating the sum
# of consecutive numbers raised to a given power, such as:
# 1^p + 2^p + 3^p + ... + n^p
# where p is a positive integer.
# See also: https://en.wikipedia.org/wiki/Faulhaber%27s_formula
use 5.010;
use strict;
use warnings;
use Math::Algebra::Symbols;
# This function returns the nth Bernoulli number
# See: https://en.wikipedia.org/wiki/Bernoulli_number
sub bernoulli_number {
my ($n) = @_;
return 0 if $n > 1 && $n % 2; # Bn = 0 for all odd n > 1
my @A;
for my $m (0 .. $n) {
$A[$m] = symbols(1) / ($m + 1);
for (my $j = $m ; $j > 0 ; $j--) {
$A[$j - 1] = $j * ($A[$j - 1] - $A[$j]);
}
}
return $A[0]; # which is Bn
}
# The binomial coefficient
# See: https://en.wikipedia.org/wiki/Binomial_coefficient
sub binomial {
my ($n, $k) = @_;
$k == 0 || $n == $k ? 1 : binomial($n-1, $k-1) + binomial($n-1, $k);
}
# The Faulhaber's formula
# See: https://en.wikipedia.org/wiki/Faulhaber%27s_formula
sub faulhaber_s_formula {
my ($p) = @_;
my $formula = 0;
for my $j (0 .. $p) {
$formula += (binomial($p + 1, $j) * bernoulli_number($j)) * symbols('n')**($p + 1 - $j);
}
(symbols(1) / ($p+1) * $formula) =~ s/\$n/n/gr =~ s/\*\*/^/gr;
}
foreach my $i (0 .. 10) {
say "$i: ", faulhaber_s_formula($i);
}