-
Notifications
You must be signed in to change notification settings - Fork 33
/
sudoku_solver_iterative.pl
210 lines (170 loc) · 5.14 KB
/
sudoku_solver_iterative.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#!/usr/bin/perl
# Author: Trizen
# Date: 12 February 2024
# https://github.com/trizen
# Fast algorithm to solve the Sudoku puzzle (iterative solution).
use 5.036;
sub is_valid ($board, $row, $col, $num) {
# Check if the number is not present in the current row and column
foreach my $i (0 .. 8) {
if (($board->[$row][$i] == $num) || ($board->[$i][$col] == $num)) {
return 0;
}
}
# Check if the number is not present in the current 3x3 subgrid
my ($start_row, $start_col) = (3 * int($row / 3), 3 * int($col / 3));
foreach my $i (0 .. 2) {
foreach my $j (0 .. 2) {
if ($board->[$start_row + $i][$start_col + $j] == $num) {
return 0;
}
}
}
return 1;
}
sub find_empty_locations ($board) {
my @locations;
# Find all empty positions (cells with 0)
foreach my $i (0 .. 8) {
foreach my $j (0 .. 8) {
if ($board->[$i][$j] == 0) {
push @locations, [$i, $j];
}
}
}
return @locations;
}
sub find_empty_location ($board) {
# Find an empty position (cell with 0)
foreach my $i (0 .. 8) {
foreach my $j (0 .. 8) {
if ($board->[$i][$j] == 0) {
return ($i, $j);
}
}
}
return (undef, undef); # If the board is filled
}
sub solve_sudoku_fallback ($board) { # fallback method
my ($row, $col) = find_empty_location($board);
if (!defined($row) && !defined($col)) {
return 1; # Puzzle is solved
}
foreach my $num (1 .. 9) {
if (is_valid($board, $row, $col, $num)) {
# Try placing the number
$board->[$row][$col] = $num;
# Recursively try to solve the rest of the puzzle
if (__SUB__->($board)) {
return 1;
}
# If placing the current number doesn't lead to a solution, backtrack
$board->[$row][$col] = 0;
}
}
return 0; # No solution found
}
sub solve_sudoku ($board) {
while (1) {
(my @empty_locations = find_empty_locations($board)) || last;
my $found = 0;
# Solve easy cases
foreach my $ij (@empty_locations) {
my ($i, $j) = @$ij;
my ($count, $value) = (0, 0);
foreach my $n (1 .. 9) {
is_valid($board, $i, $j, $n) || next;
last if (++$count > 1);
$value = $n;
}
if ($count == 1) {
$board->[$i][$j] = $value;
$found ||= 1;
}
}
next if $found;
# Solve more complex cases
my @stats;
foreach my $ij (@empty_locations) {
my ($i, $j) = @$ij;
$stats[$i][$j] = [grep { is_valid($board, $i, $j, $_) } 1 .. 9];
}
my (@rows, @cols, @subgrid);
foreach my $ij (@empty_locations) {
my ($i, $j) = @$ij;
foreach my $v (@{$stats[$i][$j]}) {
++$cols[$j][$v];
++$rows[$i][$v];
++$subgrid[3 * int($i / 3)][3 * int($j / 3)][$v];
}
}
foreach my $ij (@empty_locations) {
my ($i, $j) = @$ij;
foreach my $v (@{$stats[$i][$j]}) {
if ( $cols[$j][$v] == 1
or $rows[$i][$v] == 1
or $subgrid[3 * int($i / 3)][3 * int($j / 3)][$v] == 1) {
$board->[$i][$j] = $v;
$found ||= 1;
}
}
}
next if $found;
# Give up and try brute-force
solve_sudoku_fallback($board);
return $board;
}
return $board;
}
#<<<
# Example usage:
# Define the Sudoku puzzle as a 9x9 list with 0 representing empty cells
my $sudoku_board = [
[2, 0, 0, 0, 7, 0, 0, 0, 3],
[1, 0, 0, 0, 0, 0, 0, 8, 0],
[0, 0, 4, 2, 0, 9, 0, 0, 5],
[9, 4, 0, 0, 0, 0, 6, 0, 8],
[0, 0, 0, 8, 0, 0, 0, 9, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 0],
[7, 2, 1, 9, 0, 8, 0, 6, 0],
[0, 3, 0, 0, 2, 7, 1, 0, 0],
[4, 0, 0, 0, 0, 3, 0, 0, 0]
];
$sudoku_board = [
[0, 0, 0, 8, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 4, 3],
[5, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 7, 0, 8, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 2, 0, 0, 3, 0, 0, 0, 0],
[6, 0, 0, 0, 0, 0, 0, 7, 5],
[0, 0, 3, 4, 0, 0, 0, 0, 0],
[0, 0, 0, 2, 0, 0, 6, 0, 0]
] if 1;
$sudoku_board = [
[8, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 3, 6, 0, 0, 0, 0, 0],
[0, 7, 0, 0, 9, 0, 2, 0, 0],
[0, 5, 0, 0, 0, 7, 0, 0, 0],
[0, 0, 0, 0, 4, 5, 7, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 3, 0],
[0, 0, 1, 0, 0, 0, 0, 6, 8],
[0, 0, 8, 5, 0, 0, 0, 1, 0],
[0, 9, 0, 0, 0, 0, 4, 0, 0]
] if 0;
#>>>
sub display_grid ($grid) {
foreach my $i (0 .. $#$grid) {
print "$grid->[$i] ";
print " " if ($i + 1) % 3 == 0;
print "\n" if ($i + 1) % 9 == 0;
print "\n" if ($i + 1) % 27 == 0;
}
}
my $solution = solve_sudoku($sudoku_board);
if ($solution) {
display_grid([map { @$_ } @$solution]);
}
else {
warn "No unique solution exists!\n";
}