-
Notifications
You must be signed in to change notification settings - Fork 0
/
fermat_pseudoprimes_in_range_with_prefix.pl
130 lines (94 loc) · 3.22 KB
/
fermat_pseudoprimes_in_range_with_prefix.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#!/usr/bin/perl
# Daniel "Trizen" Șuteu
# Date: 28 August 2022
# https://github.com/trizen
# Generate all the squarefree Fermat pseudoprimes to given a base with n prime factors in a given range [a,b]. (not in sorted order)
# See also:
# https://en.wikipedia.org/wiki/Almost_prime
use 5.020;
use ntheory qw(:all);
use experimental qw(signatures);
use Math::GMP qw(:constant);
sub divceil ($x,$y) { # ceil(x/y)
my $q = $x/$y;
($q*$y == $x) ? $q : ($q+1);
}
my $max_p = 1000000;
my %znorder = map { $_ => znorder(2, $_) } @{primes($max_p)};
sub fermat_pseudoprimes_in_range ($A, $B, $k, $base, $callback) {
#my $m = "8833404609327838592895595408965";
#my $m = "1614825036214963273306005";
#my $m = Math::GMP->new("19258022593463164626195195");
#my $m = Math::GMP->new("19976310800932286865"); # finds new abundant Fermat psp
my $m = Math::GMP->new("2799500171953451613547965"); # finds new abundant Fermat psp
#my $m = Math::GMP->new("551501533874829967868949105"); # finds new abundant Fermat psp
#my $m = Math::GMP->new("1389172629407632160878965"); # finds new abundant Fermat psp
#my $m = Math::GMP->new("3935333227783660512405"); # finds new abundant Fermat psp
#my $m = Math::GMP->new("15312580652854710165"); # finds new abundant Fermat psp
#my $m = Math::GMP->new("7051637712729097263345");
#my $m = Math::GMP->new("1256975577207099774483036285");
#my $m = Math::GMP->new("24383833295");
my $L = znorder($base, $m);
$A = $A*$m;
$B = $B*$m;
$A = vecmax($A, pn_primorial($k));
$A = Math::GMP->new("$A");
$B = Math::GMP->new("$B");
if ($B > Math::GMP->new("898943937249247967890084629421065")) {
$B = Math::GMP->new("898943937249247967890084629421065");
}
if ($A > $B) {
return;
}
sub ($m, $L, $lo, $k) {
my $hi = rootint($B/$m, $k);
$hi = vecmin($max_p, $hi);
if ($lo > $hi) {
return;
}
if ($k == 1) {
$lo = vecmax($lo, divceil($A, $m));
$lo > $hi && return;
my $t = invmod($m, $L);
$t > $hi && return;
$t += $L while ($t < $lo);
for (my $p = $t ; $p <= $hi ; $p += $L) {
if (is_prime($p)) {
my $n = $m*$p;
if (($n - 1) % $znorder{$p} == 0) {
$callback->($n);
}
}
}
return;
}
foreach my $p (@{primes($lo, $hi)}) {
if ($base % $p == 0) {
next;
}
if ($m%$p == 0) {
next;
}
my $z = $znorder{$p};
#is_smooth($z, 13) || next;
#is_smooth($z, 19) || next;
gcd($m, $z) == 1 or next;
__SUB__->($m*$p, lcm($L, $z), $p+1, $k-1);
}
}->($m, $L, 3, $k);
return 1;
}
my $base = 2;
my $from = 2;
my $upto = 2*$from;
while (1) {
my $ok = 0;
say "# Range: ($from, $upto)";
foreach my $k (2..100) {
fermat_pseudoprimes_in_range($from, $upto, $k, $base, sub ($n) { say $n }) or next;
$ok = 1;
}
$ok || last;
$from = $upto+1;
$upto = 2*$from;
}