-
Notifications
You must be signed in to change notification settings - Fork 0
/
s.pl
89 lines (62 loc) · 1.58 KB
/
s.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#!/usr/bin/perl
# Daniel "Trizen" Șuteu
# Date: 06 March 2019
# https://github.com/trizen
# Generalized algorithm for generating numbers that are smooth over a set A of primes, bellow a given limit.
use 5.020;
use warnings;
use experimental qw(signatures);
use Math::GMPz;
use ntheory qw(:all);
sub check_valuation ($n, $p) {
($n*$p)%2 == 0 or return 0;
#~ if ($p > 13) {
#~ return ( ($n % $p) != 0);
#~ }
1;
}
sub smooth_numbers ($limit, $primes) {
my @h = (1);
foreach my $p (@$primes) {
say "Prime: $p";
foreach my $n (@h) {
if ($n * $p <= $limit and check_valuation($n, $p)) {
push @h, $n * $p;
}
}
}
return \@h;
}
#
# Example for finding numbers `m` such that:
# sigma(m) * phi(m) = n^k
# for some `n` and `k`, with `n > 1` and `k > 1`.
#
# See also: https://oeis.org/A306724
#
my $t = 282669887501;
my $base = 5;
sub isok ($n) {
#is_power(Math::GMPz->new(divisor_sum($n)) * euler_phi($n));
my $k = $n+1;
if ($k < $t) {
return 0;
}
powmod($base, $k - 1, Math::GMPz->new($t) * $k) == 1;
}
my $h = smooth_numbers(2402694043751, primes(63));
say "\nFound: ", scalar(@$h), " terms";
my @list;
foreach my $n (@$h) {
my $p = isok($n);
#if ($p >= 8) {
if ($p) {
say "Found: ", $n+1, " -> ", join(' * ', map { "$_->[0]^$_->[1]" } factor_exp($n)), ' -> ', is_prime($n+1) ? 'prime' : 'NOT PRIME';
#push @{$table{$p}}, $n;
#say "Found: ", $n+1;
push @list, $n+1;
}
}
say vecmin(@list);
__END__
a(29) = 282669887501