-
Notifications
You must be signed in to change notification settings - Fork 0
/
prorg.pl
232 lines (106 loc) · 4.82 KB
/
prorg.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#!/usr/bin/perl
func test(n) {
powmod(2, n.dec/2, n) == n-1
}
for k in (1..1e6) {
if (test(k)) {
#if (k.factor.any {|p| kronecker(2, p) == 1 }) {
#if (kronecker(2, k) == -1) {
#if (k.dec `divides` k.dec/2) {
if (!k.factor.any {|p|
powmod(2, p.dec/2, p) == p-1
}) {
#p-1 `divides` ((k-1)/2) }) {
say k
}
}
}
__END__
If 2^((n-1)/2) == -1 (mod n), then p-1 cannot divide (n-1)/2, where p is any prime factor of n.
The criteria for an absolute Euler pseudoprime is that for each prime factor p of n, p-1 divides (n-1)/2.
If n is a an odd composite integer, satisfying:
2^((n-1)/2) == -1 (mod n)
then, at least one of its prime factors p, must satisfy:
2^((p-1)/2) == -1 (mod p)
By writing n = p*k, for some k, then:
p-1 cannot divide p*k-1
It's easy to show that a prime number p, cannot satisfy both conditions:
if 2^((p-1)/2) == -1 (mod p), then p-1 cannot divide (p-1)/2, since p-1 > (p-1)/2.
If n is an odd composite integer satisfying:
2^((n-1)/2) == -1 (mod n)
then all its prime factors p also satisfy:
2^((p-1)/2) == -1 (mod p)
If n is a composite number n = p*q, for two primes p and q, then (p*q - 1)/2 cannot be divisible by p-1.
This can be shown by writing p and q as:
p = 2*a + 1
q = 2*b + 1
for some integers a and b.
(((2*a+1)*(2*b+1) - 1)/2) / (2*a)
If 2^((p*q-1)/2) == -1 (mod p*q), then neither p-1 nor q-1 can divide (p*q-1)/2.
This can be shown by writing p = 2*a + 1, q = 2*a + 1:
2^(((2*a+1)*(2*b+1)-1)/2) == -1 (mod p*q)
which simplifies to:
2^(2*a*b + a + b) == -1 (mod p*q)
2^(2*a*b) * 2^a * 2^b == -1 (mod p*q)
By substituing back a = (p-1)/2 and b = (q-1)/2, we get:
2^(2*((p-1)/2)*((q-1)/2)) * 2^((p-1)/2) * 2^((q-1)/2) == -1 (mod p*q)
simplifying to:
2^(1/2 (p - 1) (q - 1) + p/2 + q/2 - 1) == -1 (mod p*q)
#2^((p*q-1)/2) == -1
__END__
Suppose p is a prime p > 2, then p can be expressed as 2*q + 1, for some integer q:
2^((p-1)/2) == -1 (mod p)
which is equivalent with:
2^(((2*q + 1) - 1) / 2) == -1 (mod p)
and gets simplified to:
2^q == -1 (mod p)
Then:
2^q + 1 == 0 (mod p)
From this we know that:
2^q + 1 is divisible by p
Therefore:
2^q + 1 = p * k, for some integer k
2^((p-1)/2) + 1 = p*k
Suppose p is a prime p > 2, then p can be expressed as 2*q + 1, for some integer q:
2^(((2*q + 1) - 1) / 2) == -1
__END__
2^((p*q-1)/2) == -1 (mod n)
then:
2^((p*q-1)/2) + 1 = 0 (mod n)
__END__
If n = p*q, then:
((p*q - 1)/2) / (p-1) = (p*q - 1) / (2*(p - 1))
Equivalent to:
2*(p-1) divides p*q-1
__END__
If this were the case, then:
(n-1)/2 = (p-1)*(q-1)
meaning that:
n = 2*p*q - 2*p - 2*q + 3
Yes, there doesn't seem to exist any numbers n such that satisfy both conditions:
2^((n-1)/2) == -1 (mod n)
and
(p-1) divides (n-1)/2 for all prime factors p of n
I think this is easy to prove:
var primes_bellow = []
func isok(k) {
var w = powmod(prime(k), (k-1)/2, k)
(w != 1) && (w != k-1) || return false
primes_bellow.all {|p|
var t = powmod(p, (k-1)/2, k)
(t == 1) || (t == k-1)
}
}
var p = 2;
for k in (1..1e7) {
if (isok(k)) {
say k
primes_bellow << p
p = p.next_prime
}
}
# (($n-1)>>1) % ($_-1) == 0
However, by slightly weaking the second condition:
(p-1) dividies (n-1) for all prime factors p of n
...then the first few terms would be:
29341, 314821, 15247621, 36765901, 133800661, 299736181, 579606301, 702683101, 739444021, 775368901, 4127050621, 4340265931, 4953963781, 7361854501, 9293756581, 11360308765, 13734086221, 14386156093, 18173966581, 19331388805, 20193897781, 23224518901, 24800417461, 27363972901, 34087042891, 37870128451, 41135881645, 41764915501, 42304192981, 46493311411, 48354810571, 52396612381, 53038112821, 63734663077, 65376249445, 72725349421, 74500799437, 90495831037, 94706509885, 96133341781, 117930513949, 118805562613, 118936706941, 245291853691, 268628041501, 347556640861, 366552764101, 370230237469, 396124060501, 436580025661, 440688939301, 443729109421, 494442433171, 547365250405, 600613114501, 638345536501, 705636161413, 707161856941, 716726903707, 779999961061, 813460927501, 1084962050965, 1142877413581, 1341908088445, 1427823735229, 1435738307221, 1479982594861, 1557309989845, 1557325889821, 1671885346141, 1683061731541, 1766297137501, 1918081357501, 2030606255101, 2100917530531, 2152302898747, 2289717532901, 2332465835701, 2432870015941, 2657407435621, 2874412113301, 2881383743701, 2951861939461, 3305918887501, 3459443867461, 3944036145061, 4018209994261, 4038030605701, 4443982738651, 4525783922251, 4963134761131, 5069712129301, 5459748937021, 5576047603741, 5811733744867, 6317414663701, 6513448976101, 6614815335661, 7835972164021, 8333344148677