|
| 1 | +<!-- |
| 2 | +# Copyright 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. |
| 3 | +# |
| 4 | +# Redistribution and use in source and binary forms, with or without |
| 5 | +# modification, are permitted provided that the following conditions |
| 6 | +# are met: |
| 7 | +# * Redistributions of source code must retain the above copyright |
| 8 | +# notice, this list of conditions and the following disclaimer. |
| 9 | +# * Redistributions in binary form must reproduce the above copyright |
| 10 | +# notice, this list of conditions and the following disclaimer in the |
| 11 | +# documentation and/or other materials provided with the distribution. |
| 12 | +# * Neither the name of NVIDIA CORPORATION nor the names of its |
| 13 | +# contributors may be used to endorse or promote products derived |
| 14 | +# from this software without specific prior written permission. |
| 15 | +# |
| 16 | +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY |
| 17 | +# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 19 | +# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| 20 | +# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 21 | +# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 22 | +# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 23 | +# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 24 | +# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 | +# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 | +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 | +--> |
| 28 | + |
| 29 | +## Pre-build instructions |
| 30 | + |
| 31 | +For this tutorial, we are using the Llama2-7B HuggingFace model with pre-trained weights. |
| 32 | +Clone the repo of the model with weights and tokens [here](https://huggingface.co/meta-llama/Llama-2-7b-hf/tree/main). |
| 33 | +You will need to get permissions for the Llama2 repository as well as get access to the huggingface cli. To get access to the huggingface cli, go here: [huggingface.co/settings/tokens](https://huggingface.co/settings/tokens). |
| 34 | + |
| 35 | +## Installation |
| 36 | + |
| 37 | +1. The installation starts with cloning the TensorRT-LLM Backend and update the TensorRT-LLM submodule: |
| 38 | +```bash |
| 39 | +git clone https://github.com/triton-inference-server/tensorrtllm_backend.git |
| 40 | +# Update the submodules |
| 41 | +cd tensorrtllm_backend |
| 42 | +git submodule update --init --recursive |
| 43 | +git lfs install |
| 44 | +git lfs pull |
| 45 | +``` |
| 46 | + |
| 47 | +2. Then launch Triton docker container with TensorRT-LLM backend |
| 48 | +```docker run --rm -it --net host --shm-size=2g --ulimit memlock=-1 --ulimit stack=67108864 --gpus all -v /path/to/tensorrtllm_backend:/tensorrtllm_backend nvcr.io/nvidia/tritonserver:23.10-trtllm-py3 bash``` |
| 49 | + |
| 50 | +Alternatively, you can follow instructions [here](https://github.com/triton-inference-server/tensorrtllm_backend/blob/main/README.md) to build Triton Server with Tensorrt-LLM Backend if you want to build a specialized container. |
| 51 | + |
| 52 | +Don't forget to allow gpu usage when you launch the container. |
| 53 | + |
| 54 | +## Create Engines for each model [skip this step if you already have an engine] |
| 55 | +TensorRT-LLM requires each model to be compiled for the configuration you need before running. To do so, before you run your model for the first time on Triton Server you will need to create a TensorRT-LLM engine for the model for the configuration you want with the following steps: |
| 56 | + |
| 57 | +1. Install Tensorrt-LLM python package |
| 58 | + ```bash |
| 59 | + # TensorRT-LLM is required for generating engines. |
| 60 | + pip install git+https://github.com/NVIDIA/TensorRT-LLM.git |
| 61 | + mkdir /usr/local/lib/python3.10/dist-packages/tensorrt_llm/libs/ |
| 62 | + cp /opt/tritonserver/backends/tensorrtllm/* /usr/local/lib/python3.10/dist-packages/tensorrt_llm/libs/ |
| 63 | + ``` |
| 64 | + |
| 65 | +2. Log in to huggingface-cli |
| 66 | + |
| 67 | + ```bash |
| 68 | + huggingface-cli login --token hf_***** |
| 69 | + ``` |
| 70 | + |
| 71 | +3. Compile model engines |
| 72 | + |
| 73 | + The script to build Llama models is located in [TensorRT-LLM repository](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples). We use the one located in the docker container as `/tensorrtllm_backend/tensorrt_llm/examples/llama/build.py`. |
| 74 | + This command compiles the model with inflight batching and 1 GPU. To run with more GPUs, you will need to change the build command to use `--world_size X`. |
| 75 | + More details for the scripting please see the documentation for the Llama example [here](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama/README.md). |
| 76 | + |
| 77 | + ```bash |
| 78 | + python build.py --model_dir /<path to your llama repo>/Llama-2-7b-hf/ \ |
| 79 | + --dtype bfloat16 \ |
| 80 | + --use_gpt_attention_plugin bfloat16 \ |
| 81 | + --use_inflight_batching \ |
| 82 | + --paged_kv_cache \ |
| 83 | + --remove_input_padding \ |
| 84 | + --use_gemm_plugin bfloat16 \ |
| 85 | + --output_dir /<path to your engine>/1-gpu/ \ |
| 86 | + --world_size 1 |
| 87 | + ``` |
| 88 | + |
| 89 | + > Optional: You can check test the output of the model with `run.py` |
| 90 | + > located in the same llama examples folder. |
| 91 | + > |
| 92 | + > ```bash |
| 93 | + > python3 run.py --engine_dir=<path to your engine>/1-gpu/ --max_output_len 100 --tokenizer_dir <path to your llama repo>/Llama-2-7b-hf --input_text "How do I count to ten in French?" |
| 94 | + > ``` |
| 95 | + |
| 96 | +## Serving with Triton |
| 97 | + |
| 98 | +The last step is to create a Triton readable model. You can |
| 99 | +find a template of a model that uses inflight batching in [tensorrtllm_backend/all_models/inflight_batcher_llm](https://github.com/triton-inference-server/tensorrtllm_backend/tree/main/all_models/inflight_batcher_llm). |
| 100 | +To run our Llama2-7B model, you will need to: |
| 101 | + |
| 102 | + |
| 103 | +1. Copy over the inflight batcher models repository |
| 104 | + |
| 105 | + ```bash |
| 106 | + cp -R /tensorrtllm_backend/all_models/inflight_batcher_llm /opt/tritonserver/. |
| 107 | + ``` |
| 108 | + |
| 109 | +2. Modify config.pbtxt for the preprocessing, postprocessing and processing steps. See details in [documentation](https://github.com/triton-inference-server/tensorrtllm_backend/blob/main/README.md#create-the-model-repository): |
| 110 | + |
| 111 | + ```bash |
| 112 | + # preprocessing |
| 113 | + sed -i 's#${tokenizer_dir}#/<path to your engine>/1-gpu/#' /opt/tritonserver/inflight_batcher_llm/preprocessing/config.pbtxt |
| 114 | + sed -i 's#${tokenizer_type}#auto#' /opt/tritonserver/inflight_batcher_llm/preprocessing/config.pbtxt |
| 115 | + sed -i 's#${tokenizer_dir}#/<path to your engine>/1-gpu/#' /opt/tritonserver/inflight_batcher_llm/postprocessing/config.pbtxt |
| 116 | + sed -i 's#${tokenizer_type}#auto#' /opt/tritonserver/inflight_batcher_llm/postprocessing/config.pbtxt |
| 117 | +
|
| 118 | + sed -i 's#${decoupled_mode}#false#' /opt/tritonserver/inflight_batcher_llm/tensorrt_llm/config.pbtxt |
| 119 | + sed -i 's#${engine_dir}#/<path to your engine>/1-gpu/#' /opt/tritonserver/inflight_batcher_llm/tensorrt_llm/config.pbtxt |
| 120 | + ``` |
| 121 | + Also, ensure that the `gpt_model_type` parameter is set to `inflight_fused_batching` |
| 122 | + |
| 123 | +3. Launch Tritonserver |
| 124 | + |
| 125 | + ```bash |
| 126 | + tritonserver --model-repository=/opt/tritonserver/inflight_batcher_llm |
| 127 | + ``` |
| 128 | + Note if you built the engine with `--world_size X` where `X` is greater than 1, you will need to use the [launch_triton_server.py](https://github.com/triton-inference-server/tensorrtllm_backend/blob/release/0.5.0/scripts/launch_triton_server.py) script. |
| 129 | + ```bash |
| 130 | + python3 /tensorrtllm_backend/scripts/launch_triton_server.py --world_size=X --model_repo=/opt/tritonserver/inflight_batcher_llm |
| 131 | + ``` |
| 132 | + |
| 133 | +## Client |
| 134 | + |
| 135 | +You can test the results of the run with: |
| 136 | +1. The [inflight_batcher_llm_client.py script](https://github.com/triton-inference-server/tensorrtllm_backend/tree/main/inflight_batcher_llm) |
| 137 | + |
| 138 | +```bash |
| 139 | +python3 /tensorrtllm_backend/inflight_batcher_llm/client/inflight_batcher_llm_client.py --request-output-len 200 |
| 140 | +``` |
| 141 | + |
| 142 | +2. The [generate endpoint](https://github.com/triton-inference-server/tensorrtllm_backend/tree/release/0.5.0#query-the-server-with-the-triton-generate-endpoint) if you are using the Triton TensorRT-LLM Backend container with versions greater than `r23.10`. |
| 143 | + |
| 144 | + |
| 145 | + |
0 commit comments