-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtensorflow_utils.h
90 lines (78 loc) · 4.48 KB
/
tensorflow_utils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
// Copyright (c) 2018-2020, NVIDIA CORPORATION. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#pragma once
#include "tensorflow_backend_tf.h"
#include "triton/core/tritonserver.h"
namespace triton { namespace backend { namespace tensorflow {
/// \return nullptr if a TensorFlow shape can support a model
/// configuration shape. Dimensions with variable size in the
/// TensorFlow shape can support any size in the corresponding model
/// configuration shape dimension. Dimensions with variable size in
/// the model configuration shape must be variable size in the
/// TensorFlow shape. All fixed-sized dimensions must match exactly.
/// \param supports_batching If True then the configuration expects
/// the model to support batching and so the shape must have the
/// appropriate batch dimension.
TRITONSERVER_Error* CompareDims(
const std::string& model_name, const std::string& tensor_name,
const TRITONTF_Shape* model_shape, const std::vector<int64_t>& dims,
const bool supports_batching, const bool compare_exact);
/// \return a named input/output tensor. Return nullptr if not found.
const TRITONTF_IO* FindIOByName(
const TRITONTF_IOList* ios, const std::string& name);
// Convert a vector representing a shape to string representation.
/// \param dims The vector of dimensions to be converted.
/// \return String representation of the vector in pattern
/// "[d0,d1,...,dn]"
std::string ShapeToString(
const TRITONTF_Shape* model_shape, const size_t start_idx = 0);
/// \return true if a TF data-type matches a model configuration
/// data-type.
bool CompareDataType(TRITONTF_DataType model_dtype, const std::string& dtype);
/// \return the TRITONSERVER data-type that corresponds to a
/// TRITONTF data-type.
TRITONSERVER_DataType ConvertDataType(TRITONTF_DataType dtype);
/// \return the model configuration data-type corresponding to a TRITONTF
/// data-type.
std::string ConvertToModelConfigString(TRITONTF_DataType dtype);
/// \return the TRITONTF data-type corresponding to a model
/// configuration data-type.
TRITONTF_DataType ConvertDataType(const std::string& dtype);
/// \return the TRITONTF data-type corresponding to a model
/// configuration data-type.
TRITONTF_DataType ConvertDataType(TRITONSERVER_DataType dtype);
// If TRITONTF Error is non-OK, return the equivalent TRTIS status.
#define RETURN_IF_TRITONTF_ERROR(TFWS) \
do { \
TRITONTF_Error* error__ = (TFWS); \
if (error__ != nullptr) { \
auto status = \
TRITONSERVER_ErrorNew(TRITONSERVER_ERROR_INTERNAL, error__->msg_); \
TRITONTF_ErrorDelete(error__); \
return status; \
} \
} while (false)
}}} // namespace triton::backend::tensorflow