Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update README for 21.08 release #3273

Merged
merged 1 commit into from
Aug 28, 2021
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
267 changes: 265 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -30,5 +30,268 @@

# Triton Inference Server

**NOTE: You are currently on the r21.08 branch which tracks stabilization
towards the next release. This branch is not usable during stabilization.**
Triton Inference Server provides a cloud and edge inferencing solution
optimized for both CPUs and GPUs. Triton supports an HTTP/REST and
GRPC protocol that allows remote clients to request inferencing for
any model being managed by the server. For edge deployments, Triton is
available as a shared library with a C API that allows the full
functionality of Triton to be included directly in an
application.

## What's New in 2.13.0

* Initial Beta release for [Business Logic Scripting](https://github.com/triton-inference-server/python_backend/tree/r21.08#business-logic-scripting-beta),
a new set of utility functions that allow the execution of inference requests
on other models being served by Triton as part of executing a Python model.

* Release new [Container Composition Utility](docs/compose.md) which can be used
to create custom Triton containers with specific backends and repository
agents.

* Starting in 21.08, Triton will release two new containers on NGC.
* nvcr.io/nvidia/tritonserver:21.08-tf-python-py3 - GPU enabled Triton server
with only the TensorFlow 2.x and Python backends.
* nvcr.io/nvidia/tritonserver:21.08-pyt-python-py3 - GPU enabled Triton server
with only the PyTorch and Python backends.

* Added Model Analyzer support for models with custom operations.

## Features

* [Multiple deep-learning
frameworks](https://github.com/triton-inference-server/backend). Triton
can manage any number and mix of models (limited by system disk and
memory resources). Triton supports TensorRT, TensorFlow GraphDef,
TensorFlow SavedModel, ONNX, PyTorch TorchScript and OpenVINO model
formats. Both TensorFlow 1.x and TensorFlow 2.x are
supported. Triton also supports TensorFlow-TensorRT and
ONNX-TensorRT integrated models.

* [Concurrent model
execution](docs/architecture.md#concurrent-model-execution). Multiple
models (or multiple instances of the same model) can run
simultaneously on the same GPU or on multiple GPUs.

* [Dynamic batching](docs/architecture.md#models-and-schedulers). For
models that support batching, Triton implements multiple scheduling
and batching algorithms that combine individual inference requests
together to improve inference throughput. These scheduling and
batching decisions are transparent to the client requesting
inference.

* [Extensible
backends](https://github.com/triton-inference-server/backend). In
addition to deep-learning frameworks, Triton provides a *backend
API* that allows Triton to be extended with any model execution
logic implemented in
[Python](https://github.com/triton-inference-server/python_backend)
or
[C++](https://github.com/triton-inference-server/backend/blob/main/README.md#triton-backend-api),
while still benefiting from the CPU and GPU support, concurrent
execution, dynamic batching and other features provided by Triton.

* [Model pipelines](docs/architecture.md#ensemble-models). Triton
*ensembles* represents a pipeline of one or more models and the
connection of input and output tensors between those models. A
single inference request to an ensemble will trigger the execution
of the entire pipeline.

* [HTTP/REST and GRPC inference
protocols](docs/inference_protocols.md) based on the community
developed [KFServing
protocol](https://github.com/kubeflow/kfserving/tree/master/docs/predict-api/v2).

* A [C API](docs/inference_protocols.md#c-api) allows Triton to be
linked directly into your application for edge and other in-process
use cases.

* [Metrics](docs/metrics.md) indicating GPU utilization, server
throughput, and server latency. The metrics are provided in
Prometheus data format.

## Documentation

[Triton Architecture](docs/architecture.md) gives a high-level
overview of the structure and capabilities of the inference
server. There is also an [FAQ](docs/faq.md). Additional documentation
is divided into [*user*](#user-documentation) and
[*developer*](#developer-documentation) sections. The *user*
documentation describes how to use Triton as an inference solution,
including information on how to configure Triton, how to organize and
configure your models, how to use the C++ and Python clients, etc. The
*developer* documentation describes how to build and test Triton and
also how Triton can be extended with new functionality.

The Triton [Release
Notes](https://docs.nvidia.com/deeplearning/triton-inference-server/release-notes/index.html)
and [Support
Matrix](https://docs.nvidia.com/deeplearning/dgx/support-matrix/index.html)
indicate the required versions of the NVIDIA Driver and CUDA, and also
describe supported GPUs.

### User Documentation

- [QuickStart](docs/quickstart.md)
- [Install](docs/quickstart.md#install-triton-docker-image)
- [Run](docs/quickstart.md#run-triton)
- [Model Repository](docs/model_repository.md)
- [Model Configuration](docs/model_configuration.md)
- [Model Management](docs/model_management.md)
- [Custom Operations](docs/custom_operations.md)
- [Client Libraries and Examples](https://github.com/triton-inference-server/client)
- [Optimization](docs/optimization.md)
- [Model Analyzer](docs/model_analyzer.md)
- [Performance Analyzer](docs/perf_analyzer.md)
- [Metrics](docs/metrics.md)
- [Jetson and JetPack](docs/jetson.md)

The [quickstart](docs/quickstart.md) walks you through all the steps
required to install and run Triton with an example image
classification model and then use an example client application to
perform inferencing using that model. The quickstart also demonstrates
how [Triton supports both GPU systems and CPU-only
systems](docs/quickstart.md#run-triton).

The first step in using Triton to serve your models is to place one or
more models into a [model
repository](docs/model_repository.md). Optionally, depending on the type
of the model and on what Triton capabilities you want to enable for
the model, you may need to create a [model
configuration](docs/model_configuration.md) for the model. If your
model has [custom operations](docs/custom_operations.md) you will need
to make sure they are loaded correctly by Triton.

After you have your model(s) available in Triton, you will want to
send inference and other requests to Triton from your *client*
application. The [Python and C++ client
libraries](https://github.com/triton-inference-server/client) provide
APIs to simplify this communication. There are also a large number of
[client examples](https://github.com/triton-inference-server/client)
that demonstrate how to use the libraries. You can also send
HTTP/REST requests directly to Triton using the [HTTP/REST JSON-based
protocol](docs/inference_protocols.md#httprest-and-grpc-protocols) or
[generate a GRPC client for many other
languages](https://github.com/triton-inference-server/client).

Understanding and [optimizing performance](docs/optimization.md) is an
important part of deploying your models. The Triton project provides
the [Performance Analyzer](docs/perf_analyzer.md) and the [Model
Analyzer](docs/model_analyzer.md) to help your optimization
efforts. Specifically, you will want to optimize [scheduling and
batching](docs/architecture.md#models-and-schedulers) and [model
instances](docs/model_configuration.md#instance-groups) appropriately
for each model. You may also want to consider [ensembling multiple
models and pre/post-processing](docs/architecture.md#ensemble-models)
into a pipeline. In some cases you may find [individual inference
request trace data](docs/trace.md) useful when optimizing. A
[Prometheus metrics endpoint](docs/metrics.md) allows you to visualize
and monitor aggregate inference metrics.

NVIDIA publishes a number of [deep learning
examples](https://github.com/NVIDIA/DeepLearningExamples) that use
Triton.

As part of your deployment strategy you may want to [explicitly manage
what models are available by loading and unloading
models](docs/model_management.md) from a running Triton server. If you
are using Kubernetes for deployment there are simple examples of how
to deploy Triton using Kubernetes and Helm, one for
[GCP](deploy/gcp/README.md) and one for [AWS](deploy/aws/README.md).

The [version 1 to version 2 migration
information](docs/v1_to_v2.md) is helpful if you are moving to
version 2 of Triton from previously using version 1.

### Developer Documentation

- [Build](docs/build.md)
- [Protocols and APIs](docs/inference_protocols.md).
- [Backends](https://github.com/triton-inference-server/backend)
- [Repository Agents](docs/repository_agents.md)
- [Test](docs/test.md)

Triton can be [built using
Docker](docs/build.md#building-triton-with-docker) or [built without
Docker](docs/build.md#building-triton-without-docker). After building
you should [test Triton](docs/test.md).

It is also possible to [create a Docker image containing a customized
Triton](docs/compose.md) that contains only a subset of the backends.

The Triton project also provides [client libraries for Python and
C++](https://github.com/triton-inference-server/client) that make it
easy to communicate with the server. There are also a large number of
[example clients](https://github.com/triton-inference-server/client)
that demonstrate how to use the libraries. You can also develop your
own clients that directly communicate with Triton using [HTTP/REST or
GRPC protocols](docs/inference_protocols.md). There is also a [C
API](docs/inference_protocols.md) that allows Triton to be linked
directly into your application.

A [Triton backend](https://github.com/triton-inference-server/backend)
is the implementation that executes a model. A backend can interface
with a deep learning framework, like PyTorch, TensorFlow, TensorRT or
ONNX Runtime; or it can interface with a data processing framework
like [DALI](https://github.com/triton-inference-server/dali_backend);
or you can extend Triton by [writing your own
backend](https://github.com/triton-inference-server/backend) in either
[C/C++](https://github.com/triton-inference-server/backend/blob/main/README.md#triton-backend-api)
or
[Python](https://github.com/triton-inference-server/python_backend).

A [Triton repository agent](docs/repository_agents.md) extends Triton
with new functionality that operates when a model is loaded or
unloaded. You can introduce your own code to perform authentication,
decryption, conversion, or similar operations when a model is loaded.

## Papers and Presentation

* [Maximizing Deep Learning Inference Performance with NVIDIA Model
Analyzer](https://developer.nvidia.com/blog/maximizing-deep-learning-inference-performance-with-nvidia-model-analyzer/).

* [High-Performance Inferencing at Scale Using the TensorRT Inference
Server](https://developer.nvidia.com/gtc/2020/video/s22418).

* [Accelerate and Autoscale Deep Learning Inference on GPUs with
KFServing](https://developer.nvidia.com/gtc/2020/video/s22459).

* [Deep into Triton Inference Server: BERT Practical Deployment on
NVIDIA GPU](https://developer.nvidia.com/gtc/2020/video/s21736).

* [Maximizing Utilization for Data Center Inference with TensorRT
Inference Server](https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s9438-maximizing+utilization+for+data+center+inference+with+tensorrt+inference+server).

* [NVIDIA TensorRT Inference Server Boosts Deep Learning
Inference](https://devblogs.nvidia.com/nvidia-serves-deep-learning-inference/).

* [GPU-Accelerated Inference for Kubernetes with the NVIDIA TensorRT
Inference Server and
Kubeflow](https://www.kubeflow.org/blog/nvidia_tensorrt/).

## Contributing

Contributions to Triton Inference Server are more than welcome. To
contribute make a pull request and follow the guidelines outlined in
[CONTRIBUTING.md](CONTRIBUTING.md). If you have a backend, client,
example or similar contribution that is not modifying the core of
Triton, then you should file a PR in the [contrib
repo](https://github.com/triton-inference-server/contrib).

## Reporting problems, asking questions

We appreciate any feedback, questions or bug reporting regarding this
project. When help with code is needed, follow the process outlined in
the Stack Overflow (https://stackoverflow.com/help/mcve)
document. Ensure posted examples are:

* minimal – use as little code as possible that still produces the
same problem

* complete – provide all parts needed to reproduce the problem. Check
if you can strip external dependency and still show the problem. The
less time we spend on reproducing problems the more time we have to
fix it

* verifiable – test the code you're about to provide to make sure it
reproduces the problem. Remove all other problems that are not
related to your request/question.