forked from ArduPilot/ardupilot
-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathfailsafe.cpp
495 lines (414 loc) · 15.8 KB
/
failsafe.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
#include "Sub.h"
/*
* failsafe.cpp
* Failsafe checks and actions
*/
static bool failsafe_enabled = false;
static uint16_t failsafe_last_ticks;
static uint32_t failsafe_last_timestamp;
static bool in_failsafe;
// Enable mainloop lockup failsafe
void Sub::mainloop_failsafe_enable()
{
failsafe_enabled = true;
failsafe_last_timestamp = AP_HAL::micros();
}
// Disable mainloop lockup failsafe
// Used when we know we are going to delay the mainloop significantly.
void Sub::mainloop_failsafe_disable()
{
failsafe_enabled = false;
}
// This function is called from the core timer interrupt at 1kHz.
// This checks that the mainloop is running, and has not locked up.
void Sub::mainloop_failsafe_check()
{
uint32_t tnow = AP_HAL::micros();
const uint16_t ticks = scheduler.ticks();
if (ticks != failsafe_last_ticks) {
// the main loop is running, all is OK
failsafe_last_ticks = ticks;
failsafe_last_timestamp = tnow;
if (in_failsafe) {
in_failsafe = false;
AP::logger().Write_Error(LogErrorSubsystem::CPU,LogErrorCode::FAILSAFE_RESOLVED);
}
return;
}
if (!in_failsafe && failsafe_enabled && tnow - failsafe_last_timestamp > 2000000) {
// motors are running but we have gone 2 second since the
// main loop ran. That means we're in trouble and should
// disarm the motors.
in_failsafe = true;
// reduce motors to minimum (we do not immediately disarm because we want to log the failure)
if (motors.armed()) {
motors.output_min();
}
AP::logger().Write_Error(LogErrorSubsystem::CPU,LogErrorCode::FAILSAFE_OCCURRED);
}
if (failsafe_enabled && in_failsafe && tnow - failsafe_last_timestamp > 1000000) {
// disarm motors every second
failsafe_last_timestamp = tnow;
if (motors.armed()) {
motors.armed(false);
motors.output();
}
}
}
void Sub::failsafe_sensors_check()
{
if (!ap.depth_sensor_present) {
return;
}
// We need a depth sensor to do any sort of auto z control
if (sensor_health.depth) {
if (failsafe.sensor_health) {
AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_SENSORS, LogErrorCode::ERROR_RESOLVED);
failsafe.sensor_health = false;
}
return;
}
// only report once
if (failsafe.sensor_health) {
return;
}
failsafe.sensor_health = true;
gcs().send_text(MAV_SEVERITY_CRITICAL, "Depth sensor error!");
AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_SENSORS, LogErrorCode::BAD_DEPTH);
if (control_mode == ALT_HOLD || control_mode == SURFACE || mode_requires_GPS(control_mode)) {
// This should always succeed
if (!set_mode(MANUAL, ModeReason::BAD_DEPTH)) {
// We should never get here
arming.disarm(AP_Arming::Method::BADFLOWOFCONTROL);
}
}
}
void Sub::failsafe_ekf_check()
{
static uint32_t last_ekf_good_ms = 0;
if (g.fs_ekf_action == FS_EKF_ACTION_DISABLED) {
last_ekf_good_ms = AP_HAL::millis();
failsafe.ekf = false;
AP_Notify::flags.ekf_bad = false;
return;
}
float posVar, hgtVar, tasVar;
Vector3f magVar;
Vector2f offset;
float compass_variance;
float vel_variance;
ahrs.get_variances(vel_variance, posVar, hgtVar, magVar, tasVar, offset);
compass_variance = magVar.length();
if (compass_variance < g.fs_ekf_thresh && vel_variance < g.fs_ekf_thresh) {
last_ekf_good_ms = AP_HAL::millis();
failsafe.ekf = false;
AP_Notify::flags.ekf_bad = false;
return;;
}
// Bad EKF for 2 solid seconds triggers failsafe
if (AP_HAL::millis() < last_ekf_good_ms + 2000) {
failsafe.ekf = false;
AP_Notify::flags.ekf_bad = false;
return;
}
// Only trigger failsafe once
if (failsafe.ekf) {
return;
}
failsafe.ekf = true;
AP_Notify::flags.ekf_bad = true;
AP::logger().Write_Error(LogErrorSubsystem::EKFCHECK, LogErrorCode::EKFCHECK_BAD_VARIANCE);
if (AP_HAL::millis() > failsafe.last_ekf_warn_ms + 20000) {
failsafe.last_ekf_warn_ms = AP_HAL::millis();
gcs().send_text(MAV_SEVERITY_WARNING, "EKF bad");
}
if (g.fs_ekf_action == FS_EKF_ACTION_DISARM) {
arming.disarm(AP_Arming::Method::EKFFAILSAFE);
}
}
// Battery failsafe handler
void Sub::handle_battery_failsafe(const char* type_str, const int8_t action)
{
AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_BATT, LogErrorCode::FAILSAFE_OCCURRED);
switch((Failsafe_Action)action) {
case Failsafe_Action_Surface:
set_mode(SURFACE, ModeReason::BATTERY_FAILSAFE);
break;
case Failsafe_Action_Disarm:
arming.disarm(AP_Arming::Method::BATTERYFAILSAFE);
break;
case Failsafe_Action_Warn:
case Failsafe_Action_None:
break;
}
}
// Make sure that we are receiving pilot input at an appropriate interval
void Sub::failsafe_pilot_input_check()
{
#if CONFIG_HAL_BOARD != HAL_BOARD_SITL
if (g.failsafe_pilot_input == FS_PILOT_INPUT_DISABLED) {
failsafe.pilot_input = false;
return;
}
if (AP_HAL::millis() < failsafe.last_pilot_input_ms + g.failsafe_pilot_input_timeout * 1000.0f) {
failsafe.pilot_input = false; // We've received an update from the pilot within the timeout period
return;
}
if (failsafe.pilot_input) {
return; // only act once
}
failsafe.pilot_input = true;
AP::logger().Write_Error(LogErrorSubsystem::PILOT_INPUT, LogErrorCode::FAILSAFE_OCCURRED);
gcs().send_text(MAV_SEVERITY_CRITICAL, "Lost manual control");
set_neutral_controls();
if(g.failsafe_pilot_input == FS_PILOT_INPUT_DISARM) {
arming.disarm(AP_Arming::Method::PILOT_INPUT_FAILSAFE);
}
#endif
}
// Internal pressure failsafe check
// Check if the internal pressure of the watertight electronics enclosure
// has exceeded the maximum specified by the FS_PRESS_MAX parameter
void Sub::failsafe_internal_pressure_check()
{
if (g.failsafe_pressure == FS_PRESS_DISABLED) {
return; // Nothing to do
}
uint32_t tnow = AP_HAL::millis();
static uint32_t last_pressure_warn_ms;
static uint32_t last_pressure_good_ms;
if (barometer.get_pressure(0) < g.failsafe_pressure_max) {
last_pressure_good_ms = tnow;
last_pressure_warn_ms = tnow;
failsafe.internal_pressure = false;
return;
}
// 2 seconds with no readings below threshold triggers failsafe
if (tnow > last_pressure_good_ms + 2000) {
failsafe.internal_pressure = true;
}
// Warn every 30 seconds
if (failsafe.internal_pressure && tnow > last_pressure_warn_ms + 30000) {
last_pressure_warn_ms = tnow;
gcs().send_text(MAV_SEVERITY_WARNING, "Internal pressure critical!");
}
}
// Internal temperature failsafe check
// Check if the internal temperature of the watertight electronics enclosure
// has exceeded the maximum specified by the FS_TEMP_MAX parameter
void Sub::failsafe_internal_temperature_check()
{
if (g.failsafe_temperature == FS_TEMP_DISABLED) {
return; // Nothing to do
}
uint32_t tnow = AP_HAL::millis();
static uint32_t last_temperature_warn_ms;
static uint32_t last_temperature_good_ms;
if (barometer.get_temperature(0) < g.failsafe_temperature_max) {
last_temperature_good_ms = tnow;
last_temperature_warn_ms = tnow;
failsafe.internal_temperature = false;
return;
}
// 2 seconds with no readings below threshold triggers failsafe
if (tnow > last_temperature_good_ms + 2000) {
failsafe.internal_temperature = true;
}
// Warn every 30 seconds
if (failsafe.internal_temperature && tnow > last_temperature_warn_ms + 30000) {
last_temperature_warn_ms = tnow;
gcs().send_text(MAV_SEVERITY_WARNING, "Internal temperature critical!");
}
}
// Check if we are leaking and perform appropriate action
void Sub::failsafe_leak_check()
{
bool status = leak_detector.get_status();
// Do nothing if we are dry, or if leak failsafe action is disabled
if (status == false || g.failsafe_leak == FS_LEAK_DISABLED) {
if (failsafe.leak) {
AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_LEAK, LogErrorCode::FAILSAFE_RESOLVED);
}
AP_Notify::flags.leak_detected = false;
failsafe.leak = false;
return;
}
AP_Notify::flags.leak_detected = status;
uint32_t tnow = AP_HAL::millis();
// We have a leak
// Always send a warning every 20 seconds
if (tnow > failsafe.last_leak_warn_ms + 20000) {
failsafe.last_leak_warn_ms = tnow;
gcs().send_text(MAV_SEVERITY_CRITICAL, "Leak Detected");
}
// Do nothing if we have already triggered the failsafe action, or if the motors are disarmed
if (failsafe.leak) {
return;
}
failsafe.leak = true;
AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_LEAK, LogErrorCode::FAILSAFE_OCCURRED);
// Handle failsafe action
if (failsafe.leak && g.failsafe_leak == FS_LEAK_SURFACE && motors.armed()) {
set_mode(SURFACE, ModeReason::LEAK_FAILSAFE);
}
}
// failsafe_gcs_check - check for ground station failsafe
void Sub::failsafe_gcs_check()
{
// return immediately if we have never had contact with a gcs, or if gcs failsafe action is disabled
// this also checks to see if we have a GCS failsafe active, if we do, then must continue to process the logic for recovery from this state.
if (failsafe.last_heartbeat_ms == 0 || (!g.failsafe_gcs && g.failsafe_gcs == FS_GCS_DISABLED)) {
return;
}
uint32_t tnow = AP_HAL::millis();
// Check if we have gotten a GCS heartbeat recently (GCS sysid must match SYSID_MYGCS parameter)
if (tnow - failsafe.last_heartbeat_ms < FS_GCS_TIMEOUT_MS) {
// Log event if we are recovering from previous gcs failsafe
if (failsafe.gcs) {
AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_GCS, LogErrorCode::FAILSAFE_RESOLVED);
}
failsafe.gcs = false;
return;
}
//////////////////////////////
// GCS heartbeat has timed out
//////////////////////////////
// Send a warning every 30 seconds
if (tnow - failsafe.last_gcs_warn_ms > 30000) {
failsafe.last_gcs_warn_ms = tnow;
gcs().send_text(MAV_SEVERITY_WARNING, "MYGCS: %u, heartbeat lost", g.sysid_my_gcs.get());
}
// do nothing if we have already triggered the failsafe action, or if the motors are disarmed
if (failsafe.gcs || !motors.armed()) {
return;
}
failsafe.gcs = true;
AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_GCS, LogErrorCode::FAILSAFE_OCCURRED);
// handle failsafe action
if (g.failsafe_gcs == FS_GCS_DISARM) {
arming.disarm(AP_Arming::Method::GCSFAILSAFE);
} else if (g.failsafe_gcs == FS_GCS_HOLD && motors.armed()) {
if (!set_mode(ALT_HOLD, ModeReason::GCS_FAILSAFE)) {
arming.disarm(AP_Arming::Method::GCS_FAILSAFE_HOLDFAILED);
}
} else if (g.failsafe_gcs == FS_GCS_SURFACE && motors.armed()) {
if (!set_mode(SURFACE, ModeReason::GCS_FAILSAFE)) {
arming.disarm(AP_Arming::Method::GCS_FAILSAFE_SURFACEFAILED);
}
}
}
#define CRASH_CHECK_TRIGGER_MS 2000 // 2 seconds inverted indicates a crash
#define CRASH_CHECK_ANGLE_DEVIATION_DEG 30.0f // 30 degrees beyond angle max is signal we are inverted
// Check for a crash
// The vehicle is considered crashed if the angle error exceeds a specified limit for more than 2 seconds
void Sub::failsafe_crash_check()
{
static uint32_t last_crash_check_pass_ms;
uint32_t tnow = AP_HAL::millis();
// return immediately if disarmed, or crash checking disabled
if (!motors.armed() || g.fs_crash_check == FS_CRASH_DISABLED) {
last_crash_check_pass_ms = tnow;
failsafe.crash = false;
return;
}
// return immediately if we are not in an angle stabilized flight mode
if (control_mode == ACRO || control_mode == MANUAL) {
last_crash_check_pass_ms = tnow;
failsafe.crash = false;
return;
}
// check for angle error over 30 degrees
const float angle_error = attitude_control.get_att_error_angle_deg();
if (angle_error <= CRASH_CHECK_ANGLE_DEVIATION_DEG) {
last_crash_check_pass_ms = tnow;
failsafe.crash = false;
return;
}
if (tnow < last_crash_check_pass_ms + CRASH_CHECK_TRIGGER_MS) {
return;
}
// Conditions met, we are in failsafe
// Send warning to GCS
if (tnow > failsafe.last_crash_warn_ms + 20000) {
failsafe.last_crash_warn_ms = tnow;
gcs().send_text(MAV_SEVERITY_WARNING,"Crash detected");
}
// Only perform failsafe action once
if (failsafe.crash) {
return;
}
failsafe.crash = true;
AP::logger().Write_Error(LogErrorSubsystem::CRASH_CHECK, LogErrorCode::CRASH_CHECK_CRASH);
// disarm motors
if (g.fs_crash_check == FS_CRASH_DISARM) {
arming.disarm(AP_Arming::Method::CRASH);
}
}
// executes terrain failsafe if data is missing for longer than a few seconds
// missing_data should be set to true if the vehicle failed to navigate because of missing data, false if navigation is proceeding successfully
void Sub::failsafe_terrain_check()
{
// trigger with 5 seconds of failures while in AUTO mode
bool valid_mode = (control_mode == AUTO || control_mode == GUIDED);
bool timeout = (failsafe.terrain_last_failure_ms - failsafe.terrain_first_failure_ms) > FS_TERRAIN_TIMEOUT_MS;
bool trigger_event = valid_mode && timeout;
// check for clearing of event
if (trigger_event != failsafe.terrain) {
if (trigger_event) {
gcs().send_text(MAV_SEVERITY_CRITICAL,"Failsafe terrain triggered");
failsafe_terrain_on_event();
} else {
AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_TERRAIN, LogErrorCode::ERROR_RESOLVED);
failsafe.terrain = false;
}
}
}
// This gets called if mission items are in ALT_ABOVE_TERRAIN frame
// Terrain failure occurs when terrain data is not found, or rangefinder is not enabled or healthy
// set terrain data status (found or not found)
void Sub::failsafe_terrain_set_status(bool data_ok)
{
uint32_t now = AP_HAL::millis();
// record time of first and latest failures (i.e. duration of failures)
if (!data_ok) {
failsafe.terrain_last_failure_ms = now;
if (failsafe.terrain_first_failure_ms == 0) {
failsafe.terrain_first_failure_ms = now;
}
} else {
// failures cleared after 0.1 seconds of persistent successes
if (now - failsafe.terrain_last_failure_ms > 100) {
failsafe.terrain_last_failure_ms = 0;
failsafe.terrain_first_failure_ms = 0;
}
}
}
// terrain failsafe action
void Sub::failsafe_terrain_on_event()
{
failsafe.terrain = true;
AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_TERRAIN, LogErrorCode::FAILSAFE_OCCURRED);
// If rangefinder is enabled, we can recover from this failsafe
if (!rangefinder_state.enabled || !auto_terrain_recover_start()) {
failsafe_terrain_act();
}
}
// Recovery failed, take action
void Sub::failsafe_terrain_act()
{
switch (g.failsafe_terrain) {
case FS_TERRAIN_HOLD:
if (!set_mode(POSHOLD, ModeReason::TERRAIN_FAILSAFE)) {
set_mode(ALT_HOLD, ModeReason::TERRAIN_FAILSAFE);
}
AP_Notify::events.failsafe_mode_change = 1;
break;
case FS_TERRAIN_SURFACE:
set_mode(SURFACE, ModeReason::TERRAIN_FAILSAFE);
AP_Notify::events.failsafe_mode_change = 1;
break;
case FS_TERRAIN_DISARM:
default:
arming.disarm(AP_Arming::Method::TERRAINFAILSAFE);
}
}