forked from ArduPilot/ardupilot
-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathArduPlane.cpp
823 lines (718 loc) · 25.9 KB
/
ArduPlane.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
/*
Lead developer: Andrew Tridgell
Authors: Doug Weibel, Jose Julio, Jordi Munoz, Jason Short, Randy Mackay, Pat Hickey, John Arne Birkeland, Olivier Adler, Amilcar Lucas, Gregory Fletcher, Paul Riseborough, Brandon Jones, Jon Challinger, Tom Pittenger
Thanks to: Chris Anderson, Michael Oborne, Paul Mather, Bill Premerlani, James Cohen, JB from rotorFX, Automatik, Fefenin, Peter Meister, Remzibi, Yury Smirnov, Sandro Benigno, Max Levine, Roberto Navoni, Lorenz Meier, Yury MonZon
Please contribute your ideas! See https://ardupilot.org/dev for details
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Plane.h"
#define SCHED_TASK(func, rate_hz, max_time_micros, priority) SCHED_TASK_CLASS(Plane, &plane, func, rate_hz, max_time_micros, priority)
#define FAST_TASK(func) FAST_TASK_CLASS(Plane, &plane, func)
/*
scheduler table - all regular tasks should be listed here.
All entries in this table must be ordered by priority.
This table is interleaved with the table presnet in each of the
vehicles to determine the order in which tasks are run. Convenience
methods SCHED_TASK and SCHED_TASK_CLASS are provided to build
entries in this structure:
SCHED_TASK arguments:
- name of static function to call
- rate (in Hertz) at which the function should be called
- expected time (in MicroSeconds) that the function should take to run
- priority (0 through 255, lower number meaning higher priority)
SCHED_TASK_CLASS arguments:
- class name of method to be called
- instance on which to call the method
- method to call on that instance
- rate (in Hertz) at which the method should be called
- expected time (in MicroSeconds) that the method should take to run
- priority (0 through 255, lower number meaning higher priority)
FAST_TASK entries are run on every loop even if that means the loop
overruns its allotted time
*/
const AP_Scheduler::Task Plane::scheduler_tasks[] = {
// Units: Hz us
FAST_TASK(ahrs_update),
FAST_TASK(update_control_mode),
FAST_TASK(stabilize),
FAST_TASK(set_servos),
SCHED_TASK(read_radio, 50, 100, 6),
SCHED_TASK(check_short_failsafe, 50, 100, 9),
SCHED_TASK(update_speed_height, 50, 200, 12),
SCHED_TASK(update_throttle_hover, 100, 90, 24),
SCHED_TASK(read_control_switch, 7, 100, 27),
SCHED_TASK(update_GPS_50Hz, 50, 300, 30),
SCHED_TASK(update_GPS_10Hz, 10, 400, 33),
SCHED_TASK(navigate, 10, 150, 36),
SCHED_TASK(update_compass, 10, 200, 39),
SCHED_TASK(calc_airspeed_errors, 10, 100, 42),
SCHED_TASK(update_alt, 10, 200, 45),
SCHED_TASK(adjust_altitude_target, 10, 200, 48),
#if ADVANCED_FAILSAFE == ENABLED
SCHED_TASK(afs_fs_check, 10, 100, 51),
#endif
SCHED_TASK(ekf_check, 10, 75, 54),
SCHED_TASK_CLASS(GCS, (GCS*)&plane._gcs, update_receive, 300, 500, 57),
SCHED_TASK_CLASS(GCS, (GCS*)&plane._gcs, update_send, 300, 750, 60),
SCHED_TASK_CLASS(AP_ServoRelayEvents, &plane.ServoRelayEvents, update_events, 50, 150, 63),
SCHED_TASK_CLASS(AP_BattMonitor, &plane.battery, read, 10, 300, 66),
SCHED_TASK_CLASS(AP_Baro, &plane.barometer, accumulate, 50, 150, 69),
SCHED_TASK_CLASS(AP_Notify, &plane.notify, update, 50, 300, 72),
SCHED_TASK(read_rangefinder, 50, 100, 78),
#if AP_ICENGINE_ENABLED
SCHED_TASK_CLASS(AP_ICEngine, &plane.g2.ice_control, update, 10, 100, 81),
#endif
#if AP_OPTICALFLOW_ENABLED
SCHED_TASK_CLASS(AP_OpticalFlow, &plane.optflow, update, 50, 50, 87),
#endif
SCHED_TASK(one_second_loop, 1, 400, 90),
SCHED_TASK(three_hz_loop, 3, 75, 93),
SCHED_TASK(check_long_failsafe, 3, 400, 96),
#if AP_RPM_ENABLED
SCHED_TASK_CLASS(AP_RPM, &plane.rpm_sensor, update, 10, 100, 99),
#endif
#if AP_AIRSPEED_AUTOCAL_ENABLE
SCHED_TASK(airspeed_ratio_update, 1, 100, 102),
#endif // AP_AIRSPEED_AUTOCAL_ENABLE
#if HAL_MOUNT_ENABLED
SCHED_TASK_CLASS(AP_Mount, &plane.camera_mount, update, 50, 100, 105),
#endif // HAL_MOUNT_ENABLED
#if AP_CAMERA_ENABLED
SCHED_TASK_CLASS(AP_Camera, &plane.camera, update, 50, 100, 108),
#endif // CAMERA == ENABLED
SCHED_TASK_CLASS(AP_Scheduler, &plane.scheduler, update_logging, 0.2, 100, 111),
SCHED_TASK(compass_save, 0.1, 200, 114),
SCHED_TASK(Log_Write_FullRate, 400, 300, 117),
SCHED_TASK(update_logging10, 10, 300, 120),
SCHED_TASK(update_logging25, 25, 300, 123),
#if HAL_SOARING_ENABLED
SCHED_TASK(update_soaring, 50, 400, 126),
#endif
SCHED_TASK(parachute_check, 10, 200, 129),
#if AP_TERRAIN_AVAILABLE
SCHED_TASK_CLASS(AP_Terrain, &plane.terrain, update, 10, 200, 132),
#endif // AP_TERRAIN_AVAILABLE
SCHED_TASK(update_is_flying_5Hz, 5, 100, 135),
#if LOGGING_ENABLED == ENABLED
SCHED_TASK_CLASS(AP_Logger, &plane.logger, periodic_tasks, 50, 400, 138),
#endif
SCHED_TASK_CLASS(AP_InertialSensor, &plane.ins, periodic, 50, 50, 141),
#if HAL_ADSB_ENABLED
SCHED_TASK(avoidance_adsb_update, 10, 100, 144),
#endif
SCHED_TASK_CLASS(RC_Channels, (RC_Channels*)&plane.g2.rc_channels, read_aux_all, 10, 200, 147),
#if HAL_BUTTON_ENABLED
SCHED_TASK_CLASS(AP_Button, &plane.button, update, 5, 100, 150),
#endif
#if STATS_ENABLED == ENABLED
SCHED_TASK_CLASS(AP_Stats, &plane.g2.stats, update, 1, 100, 153),
#endif
#if AP_GRIPPER_ENABLED
SCHED_TASK_CLASS(AP_Gripper, &plane.g2.gripper, update, 10, 75, 156),
#endif
#if LANDING_GEAR_ENABLED == ENABLED
SCHED_TASK(landing_gear_update, 5, 50, 159),
#endif
};
void Plane::get_scheduler_tasks(const AP_Scheduler::Task *&tasks,
uint8_t &task_count,
uint32_t &log_bit)
{
tasks = &scheduler_tasks[0];
task_count = ARRAY_SIZE(scheduler_tasks);
log_bit = MASK_LOG_PM;
}
#if HAL_QUADPLANE_ENABLED
constexpr int8_t Plane::_failsafe_priorities[7];
#else
constexpr int8_t Plane::_failsafe_priorities[6];
#endif
// update AHRS system
void Plane::ahrs_update()
{
arming.update_soft_armed();
ahrs.update();
if (should_log(MASK_LOG_IMU)) {
AP::ins().Write_IMU();
}
// calculate a scaled roll limit based on current pitch
roll_limit_cd = aparm.roll_limit_cd;
pitch_limit_min_cd = aparm.pitch_limit_min_cd;
bool rotate_limits = true;
#if HAL_QUADPLANE_ENABLED
if (quadplane.tailsitter.active()) {
rotate_limits = false;
}
#endif
if (rotate_limits) {
roll_limit_cd *= ahrs.cos_pitch();
pitch_limit_min_cd *= fabsf(ahrs.cos_roll());
}
// updated the summed gyro used for ground steering and
// auto-takeoff. Dot product of DCM.c with gyro vector gives earth
// frame yaw rate
steer_state.locked_course_err += ahrs.get_yaw_rate_earth() * G_Dt;
steer_state.locked_course_err = wrap_PI(steer_state.locked_course_err);
#if HAL_QUADPLANE_ENABLED
// check if we have had a yaw reset from the EKF
quadplane.check_yaw_reset();
// update inertial_nav for quadplane
quadplane.inertial_nav.update();
#endif
if (should_log(MASK_LOG_VIDEO_STABILISATION)) {
ahrs.write_video_stabilisation();
}
}
/*
update 50Hz speed/height controller
*/
void Plane::update_speed_height(void)
{
if (control_mode->does_auto_throttle()) {
// Call TECS 50Hz update. Note that we call this regardless of
// throttle suppressed, as this needs to be running for
// takeoff detection
TECS_controller.update_50hz();
}
#if HAL_QUADPLANE_ENABLED
if (quadplane.in_vtol_mode() ||
quadplane.in_assisted_flight()) {
quadplane.update_throttle_mix();
}
#endif
}
/*
read and update compass
*/
void Plane::update_compass(void)
{
compass.read();
}
/*
do 10Hz logging
*/
void Plane::update_logging10(void)
{
bool log_faster = (should_log(MASK_LOG_ATTITUDE_FULLRATE) || should_log(MASK_LOG_ATTITUDE_FAST));
if (should_log(MASK_LOG_ATTITUDE_MED) && !log_faster) {
Log_Write_Attitude();
ahrs.Write_AOA_SSA();
} else if (log_faster) {
ahrs.Write_AOA_SSA();
}
}
/*
do 25Hz logging
*/
void Plane::update_logging25(void)
{
// MASK_LOG_ATTITUDE_FULLRATE logs at 400Hz, MASK_LOG_ATTITUDE_FAST at 25Hz, MASK_LOG_ATTIUDE_MED logs at 10Hz
// highest rate selected wins
bool log_faster = should_log(MASK_LOG_ATTITUDE_FULLRATE);
if (should_log(MASK_LOG_ATTITUDE_FAST) && !log_faster) {
Log_Write_Attitude();
}
if (should_log(MASK_LOG_CTUN)) {
Log_Write_Control_Tuning();
AP::ins().write_notch_log_messages();
#if HAL_GYROFFT_ENABLED
gyro_fft.write_log_messages();
#endif
}
if (should_log(MASK_LOG_NTUN)) {
Log_Write_Nav_Tuning();
Log_Write_Guided();
}
if (should_log(MASK_LOG_RC))
Log_Write_RC();
if (should_log(MASK_LOG_IMU))
AP::ins().Write_Vibration();
}
/*
check for AFS failsafe check
*/
#if ADVANCED_FAILSAFE == ENABLED
void Plane::afs_fs_check(void)
{
afs.check(failsafe.AFS_last_valid_rc_ms);
}
#endif
#if HAL_WITH_IO_MCU
#include <AP_IOMCU/AP_IOMCU.h>
extern AP_IOMCU iomcu;
#endif
void Plane::one_second_loop()
{
// make it possible to change control channel ordering at runtime
set_control_channels();
#if HAL_WITH_IO_MCU
iomcu.setup_mixing(&rcmap, g.override_channel.get(), g.mixing_gain, g2.manual_rc_mask);
#endif
#if HAL_ADSB_ENABLED
adsb.set_stall_speed_cm(aparm.airspeed_min * 100); // convert m/s to cm/s
adsb.set_max_speed(aparm.airspeed_max);
#endif
if (g2.flight_options & FlightOptions::ENABLE_DEFAULT_AIRSPEED) {
// use average of min and max airspeed as default airspeed fusion with high variance
ahrs.writeDefaultAirSpeed((float)((aparm.airspeed_min + aparm.airspeed_max)/2),
(float)((aparm.airspeed_max - aparm.airspeed_min)/2));
}
// sync MAVLink system ID
mavlink_system.sysid = g.sysid_this_mav;
SRV_Channels::enable_aux_servos();
// update notify flags
AP_Notify::flags.pre_arm_check = arming.pre_arm_checks(false);
AP_Notify::flags.pre_arm_gps_check = true;
AP_Notify::flags.armed = arming.is_armed() || arming.arming_required() == AP_Arming::Required::NO;
#if AP_TERRAIN_AVAILABLE
if (should_log(MASK_LOG_GPS)) {
terrain.log_terrain_data();
}
#endif
// update home position if NOT armed and gps position has
// changed. Update every 5s at most
if (!arming.is_armed() &&
gps.last_message_time_ms() - last_home_update_ms > 5000 &&
gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
last_home_update_ms = gps.last_message_time_ms();
update_home();
// reset the landing altitude correction
landing.alt_offset = 0;
}
// this ensures G_Dt is correct, catching startup issues with constructors
// calling the scheduler methods
if (!is_equal(1.0f/scheduler.get_loop_rate_hz(), scheduler.get_loop_period_s()) ||
!is_equal(G_Dt, scheduler.get_loop_period_s())) {
INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control);
}
}
void Plane::three_hz_loop()
{
#if AP_FENCE_ENABLED
fence_check();
#endif
}
void Plane::compass_save()
{
if (AP::compass().available() &&
compass.get_learn_type() >= Compass::LEARN_INTERNAL &&
!hal.util->get_soft_armed()) {
/*
only save offsets when disarmed
*/
compass.save_offsets();
}
}
#if AP_AIRSPEED_AUTOCAL_ENABLE
/*
once a second update the airspeed calibration ratio
*/
void Plane::airspeed_ratio_update(void)
{
if (!airspeed.enabled() ||
gps.status() < AP_GPS::GPS_OK_FIX_3D ||
gps.ground_speed() < 4) {
// don't calibrate when not moving
return;
}
if (airspeed.get_airspeed() < aparm.airspeed_min &&
gps.ground_speed() < (uint32_t)aparm.airspeed_min) {
// don't calibrate when flying below the minimum airspeed. We
// check both airspeed and ground speed to catch cases where
// the airspeed ratio is way too low, which could lead to it
// never coming up again
return;
}
if (labs(ahrs.roll_sensor) > roll_limit_cd ||
ahrs.pitch_sensor > aparm.pitch_limit_max_cd ||
ahrs.pitch_sensor < pitch_limit_min_cd) {
// don't calibrate when going beyond normal flight envelope
return;
}
const Vector3f &vg = gps.velocity();
airspeed.update_calibration(vg, aparm.airspeed_max);
}
#endif // AP_AIRSPEED_AUTOCAL_ENABLE
/*
read the GPS and update position
*/
void Plane::update_GPS_50Hz(void)
{
gps.update();
// get position from AHRS
have_position = ahrs.get_location(current_loc);
ahrs.get_relative_position_D_home(relative_altitude);
relative_altitude *= -1.0f;
}
/*
read update GPS position - 10Hz update
*/
void Plane::update_GPS_10Hz(void)
{
static uint32_t last_gps_msg_ms;
if (gps.last_message_time_ms() != last_gps_msg_ms && gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
last_gps_msg_ms = gps.last_message_time_ms();
if (ground_start_count > 1) {
ground_start_count--;
} else if (ground_start_count == 1) {
// We countdown N number of good GPS fixes
// so that the altitude is more accurate
// -------------------------------------
if (current_loc.lat == 0 && current_loc.lng == 0) {
ground_start_count = 5;
} else if (!hal.util->was_watchdog_reset()) {
if (!set_home_persistently(gps.location())) {
// silently ignore failure...
}
next_WP_loc = prev_WP_loc = home;
ground_start_count = 0;
}
}
// update wind estimate
ahrs.estimate_wind();
} else if (gps.status() < AP_GPS::GPS_OK_FIX_3D && ground_start_count != 0) {
// lost 3D fix, start again
ground_start_count = 5;
}
calc_gndspeed_undershoot();
}
/*
main control mode dependent update code
*/
void Plane::update_control_mode(void)
{
if (control_mode != &mode_auto) {
// hold_course is only used in takeoff and landing
steer_state.hold_course_cd = -1;
}
update_fly_forward();
control_mode->update();
}
void Plane::update_fly_forward(void)
{
// ensure we are fly-forward when we are flying as a pure fixed
// wing aircraft. This helps the EKF produce better state
// estimates as it can make stronger assumptions
#if HAL_QUADPLANE_ENABLED
if (quadplane.available() &&
quadplane.tailsitter.is_in_fw_flight()) {
ahrs.set_fly_forward(true);
return;
}
if (quadplane.in_vtol_mode() ||
quadplane.in_assisted_flight()) {
ahrs.set_fly_forward(false);
return;
}
#endif
if (flight_stage == AP_FixedWing::FlightStage::LAND) {
ahrs.set_fly_forward(landing.is_flying_forward());
return;
}
ahrs.set_fly_forward(true);
}
/*
set the flight stage
*/
void Plane::set_flight_stage(AP_FixedWing::FlightStage fs)
{
if (fs == flight_stage) {
return;
}
landing.handle_flight_stage_change(fs == AP_FixedWing::FlightStage::LAND);
if (fs == AP_FixedWing::FlightStage::ABORT_LANDING) {
gcs().send_text(MAV_SEVERITY_NOTICE, "Landing aborted, climbing to %dm",
int(auto_state.takeoff_altitude_rel_cm/100));
}
flight_stage = fs;
Log_Write_Status();
}
void Plane::update_alt()
{
barometer.update();
#if HAL_QUADPLANE_ENABLED
if (quadplane.available()) {
quadplane.motors->set_air_density_ratio(barometer.get_air_density_ratio());
}
#endif
// calculate the sink rate.
float sink_rate;
Vector3f vel;
if (ahrs.get_velocity_NED(vel)) {
sink_rate = vel.z;
} else if (gps.status() >= AP_GPS::GPS_OK_FIX_3D && gps.have_vertical_velocity()) {
sink_rate = gps.velocity().z;
} else {
sink_rate = -barometer.get_climb_rate();
}
// low pass the sink rate to take some of the noise out
auto_state.sink_rate = 0.8f * auto_state.sink_rate + 0.2f*sink_rate;
#if PARACHUTE == ENABLED
parachute.set_sink_rate(auto_state.sink_rate);
#endif
update_flight_stage();
#if AP_SCRIPTING_ENABLED
if (nav_scripting_active()) {
// don't call TECS while we are in a trick
return;
}
#endif
if (control_mode->does_auto_throttle() && !throttle_suppressed) {
float distance_beyond_land_wp = 0;
if (flight_stage == AP_FixedWing::FlightStage::LAND &&
current_loc.past_interval_finish_line(prev_WP_loc, next_WP_loc)) {
distance_beyond_land_wp = current_loc.get_distance(next_WP_loc);
}
tecs_target_alt_cm = relative_target_altitude_cm();
if (control_mode == &mode_rtl && !rtl.done_climb && (g2.rtl_climb_min > 0 || (plane.g2.flight_options & FlightOptions::CLIMB_BEFORE_TURN))) {
// ensure we do the initial climb in RTL. We add an extra
// 10m in the demanded height to push TECS to climb
// quickly
tecs_target_alt_cm = MAX(tecs_target_alt_cm, prev_WP_loc.alt - home.alt) + (g2.rtl_climb_min+10)*100;
}
TECS_controller.update_pitch_throttle(tecs_target_alt_cm,
target_airspeed_cm,
flight_stage,
distance_beyond_land_wp,
get_takeoff_pitch_min_cd(),
throttle_nudge,
tecs_hgt_afe(),
aerodynamic_load_factor);
}
}
/*
recalculate the flight_stage
*/
void Plane::update_flight_stage(void)
{
// Update the speed & height controller states
if (control_mode->does_auto_throttle() && !throttle_suppressed) {
if (control_mode == &mode_auto) {
#if HAL_QUADPLANE_ENABLED
if (quadplane.in_vtol_auto()) {
set_flight_stage(AP_FixedWing::FlightStage::VTOL);
return;
}
#endif
if (auto_state.takeoff_complete == false) {
set_flight_stage(AP_FixedWing::FlightStage::TAKEOFF);
return;
} else if (mission.get_current_nav_cmd().id == MAV_CMD_NAV_LAND) {
if (landing.is_commanded_go_around() || flight_stage == AP_FixedWing::FlightStage::ABORT_LANDING) {
// abort mode is sticky, it must complete while executing NAV_LAND
set_flight_stage(AP_FixedWing::FlightStage::ABORT_LANDING);
} else if (landing.get_abort_throttle_enable() && get_throttle_input() >= 90 &&
landing.request_go_around()) {
gcs().send_text(MAV_SEVERITY_INFO,"Landing aborted via throttle");
set_flight_stage(AP_FixedWing::FlightStage::ABORT_LANDING);
} else {
set_flight_stage(AP_FixedWing::FlightStage::LAND);
}
return;
}
#if HAL_QUADPLANE_ENABLED
if (quadplane.in_assisted_flight()) {
set_flight_stage(AP_FixedWing::FlightStage::VTOL);
return;
}
#endif
set_flight_stage(AP_FixedWing::FlightStage::NORMAL);
} else if (control_mode != &mode_takeoff) {
// If not in AUTO then assume normal operation for normal TECS operation.
// This prevents TECS from being stuck in the wrong stage if you switch from
// AUTO to, say, FBWB during a landing, an aborted landing or takeoff.
set_flight_stage(AP_FixedWing::FlightStage::NORMAL);
}
return;
}
#if HAL_QUADPLANE_ENABLED
if (quadplane.in_vtol_mode() ||
quadplane.in_assisted_flight()) {
set_flight_stage(AP_FixedWing::FlightStage::VTOL);
return;
}
#endif
set_flight_stage(AP_FixedWing::FlightStage::NORMAL);
}
/*
If land_DisarmDelay is enabled (non-zero), check for a landing then auto-disarm after time expires
only called from AP_Landing, when the landing library is ready to disarm
*/
void Plane::disarm_if_autoland_complete()
{
if (landing.get_disarm_delay() > 0 &&
!is_flying() &&
arming.arming_required() != AP_Arming::Required::NO &&
arming.is_armed()) {
/* we have auto disarm enabled. See if enough time has passed */
if (millis() - auto_state.last_flying_ms >= landing.get_disarm_delay()*1000UL) {
if (arming.disarm(AP_Arming::Method::AUTOLANDED)) {
gcs().send_text(MAV_SEVERITY_INFO,"Auto disarmed");
}
}
}
}
/*
the height above field elevation that we pass to TECS
*/
float Plane::tecs_hgt_afe(void)
{
/*
pass the height above field elevation as the height above
the ground when in landing, which means that TECS gets the
rangefinder information and thus can know when the flare is
coming.
*/
float hgt_afe;
if (flight_stage == AP_FixedWing::FlightStage::LAND) {
hgt_afe = height_above_target();
hgt_afe -= rangefinder_correction();
} else {
// when in normal flight we pass the hgt_afe as relative
// altitude to home
hgt_afe = relative_altitude;
}
return hgt_afe;
}
// vehicle specific waypoint info helpers
bool Plane::get_wp_distance_m(float &distance) const
{
// see GCS_MAVLINK_Plane::send_nav_controller_output()
if (control_mode == &mode_manual) {
return false;
}
#if HAL_QUADPLANE_ENABLED
if (quadplane.in_vtol_mode()) {
distance = quadplane.using_wp_nav() ? quadplane.wp_nav->get_wp_distance_to_destination() * 0.01 : 0;
return true;
}
#endif
distance = auto_state.wp_distance;
return true;
}
bool Plane::get_wp_bearing_deg(float &bearing) const
{
// see GCS_MAVLINK_Plane::send_nav_controller_output()
if (control_mode == &mode_manual) {
return false;
}
#if HAL_QUADPLANE_ENABLED
if (quadplane.in_vtol_mode()) {
bearing = quadplane.using_wp_nav() ? quadplane.wp_nav->get_wp_bearing_to_destination() : 0;
return true;
}
#endif
bearing = nav_controller->target_bearing_cd() * 0.01;
return true;
}
bool Plane::get_wp_crosstrack_error_m(float &xtrack_error) const
{
// see GCS_MAVLINK_Plane::send_nav_controller_output()
if (control_mode == &mode_manual) {
return false;
}
#if HAL_QUADPLANE_ENABLED
if (quadplane.in_vtol_mode()) {
xtrack_error = quadplane.using_wp_nav() ? quadplane.wp_nav->crosstrack_error() : 0;
return true;
}
#endif
xtrack_error = nav_controller->crosstrack_error();
return true;
}
#if AP_SCRIPTING_ENABLED
// set target location (for use by scripting)
bool Plane::set_target_location(const Location &target_loc)
{
Location loc{target_loc};
if (plane.control_mode != &plane.mode_guided) {
// only accept position updates when in GUIDED mode
return false;
}
// add home alt if needed
if (loc.relative_alt) {
loc.alt += plane.home.alt;
loc.relative_alt = 0;
}
plane.set_guided_WP(loc);
return true;
}
// set target location (for use by scripting)
bool Plane::get_target_location(Location& target_loc)
{
switch (control_mode->mode_number()) {
case Mode::Number::RTL:
case Mode::Number::AVOID_ADSB:
case Mode::Number::GUIDED:
case Mode::Number::AUTO:
case Mode::Number::LOITER:
case Mode::Number::TAKEOFF:
#if HAL_QUADPLANE_ENABLED
case Mode::Number::QLOITER:
case Mode::Number::QLAND:
case Mode::Number::QRTL:
#endif
target_loc = next_WP_loc;
return true;
break;
default:
break;
}
return false;
}
/*
update_target_location() works in all auto navigation modes
*/
bool Plane::update_target_location(const Location &old_loc, const Location &new_loc)
{
if (!old_loc.same_latlon_as(next_WP_loc)) {
return false;
}
ftype alt_diff;
if (!old_loc.get_alt_distance(next_WP_loc, alt_diff) ||
!is_zero(alt_diff)) {
return false;
}
next_WP_loc = new_loc;
next_WP_loc.change_alt_frame(old_loc.get_alt_frame());
return true;
}
// allow for velocity matching in VTOL
bool Plane::set_velocity_match(const Vector2f &velocity)
{
#if HAL_QUADPLANE_ENABLED
if (quadplane.in_vtol_mode() || quadplane.in_vtol_land_sequence()) {
quadplane.poscontrol.velocity_match = velocity;
quadplane.poscontrol.last_velocity_match_ms = AP_HAL::millis();
return true;
}
#endif
return false;
}
#endif // AP_SCRIPTING_ENABLED
// correct AHRS pitch for TRIM_PITCH_CD in non-VTOL modes, and return VTOL view in VTOL
void Plane::get_osd_roll_pitch_rad(float &roll, float &pitch) const
{
#if HAL_QUADPLANE_ENABLED
if (quadplane.show_vtol_view()) {
pitch = quadplane.ahrs_view->pitch;
roll = quadplane.ahrs_view->roll;
return;
}
#endif
pitch = ahrs.pitch;
roll = ahrs.roll;
if (!(g2.flight_options & FlightOptions::OSD_REMOVE_TRIM_PITCH_CD)) { // correct for TRIM_PITCH_CD
pitch -= g.pitch_trim_cd * 0.01 * DEG_TO_RAD;
}
}
AP_HAL_MAIN_CALLBACKS(&plane);