@@ -15,12 +15,12 @@ namespace nnvm {
15
15
namespace top {
16
16
17
17
// conv2d
18
- DMLC_REGISTER_PARAMETER (ConvParam );
18
+ DMLC_REGISTER_PARAMETER (Conv2DParam );
19
19
20
20
inline bool Conv2DInferShape (const nnvm::NodeAttrs& attrs,
21
21
std::vector<TShape>* in_shape,
22
22
std::vector<TShape>* out_shape) {
23
- const ConvParam & param = nnvm::get<ConvParam >(attrs.parsed );
23
+ const Conv2DParam & param = nnvm::get<Conv2DParam >(attrs.parsed );
24
24
if (param.use_bias ) {
25
25
CHECK_EQ (in_shape->size (), 3U ) << " Input:[data, weight, bias]" ;
26
26
} else {
@@ -51,10 +51,10 @@ inline bool Conv2DInferShape(const nnvm::NodeAttrs& attrs,
51
51
wshape = ConvertLayout (wshape, kNCHW , param.layout );
52
52
wshape[0 ] *= param.groups ;
53
53
54
- NNVM_ASSIGN_INPUT_SHAPE (attrs, *in_shape, ConvParam ::kWeight , wshape);
54
+ NNVM_ASSIGN_INPUT_SHAPE (attrs, *in_shape, Conv2DParam ::kWeight , wshape);
55
55
if (param.use_bias ) {
56
56
NNVM_ASSIGN_INPUT_SHAPE (attrs, *in_shape,
57
- ConvParam ::kBias , TShape ({param.channels }));
57
+ Conv2DParam ::kBias , TShape ({param.channels }));
58
58
}
59
59
// dilation
60
60
dim_t dilated_ksize_y = 1 + (param.kernel_size [0 ] - 1 ) * param.dilation [0 ];
@@ -79,7 +79,7 @@ inline bool Conv2DInferShape(const nnvm::NodeAttrs& attrs,
79
79
if (oshape[3 ] && param.strides [1 ] == 1 ) {
80
80
dshape[3 ] = oshape[3 ] + dilated_ksize_x - 1 - 2 * param.padding [1 ];
81
81
}
82
- NNVM_ASSIGN_INPUT_SHAPE (attrs, *in_shape, ConvParam ::kData ,
82
+ NNVM_ASSIGN_INPUT_SHAPE (attrs, *in_shape, Conv2DParam ::kData ,
83
83
ConvertLayout (dshape, kNCHW , param.layout ));
84
84
// Check whether the kernel sizes are valid
85
85
if (dshape[2 ] != 0 ) {
@@ -112,29 +112,29 @@ a bias vector is created and added to the outputs.
112
112
.add_argument(" data" , " 4D Tensor" , " Input data." )
113
113
.add_argument(" weight" , " 4D Tensor" , " Weight matrix." )
114
114
.add_argument(" bias" , " 1D Tensor" , " Bias parameter." )
115
- .add_arguments(ConvParam ::__FIELDS__())
116
- .set_attr_parser(ParamParser<ConvParam >)
115
+ .add_arguments(Conv2DParam ::__FIELDS__())
116
+ .set_attr_parser(ParamParser<Conv2DParam >)
117
117
.set_num_outputs(1 )
118
- .set_num_inputs(UseBiasNumInputs<ConvParam >)
119
- .set_attr<FListInputNames>(" FListInputNames" , UseBiasListInputNames<ConvParam >)
118
+ .set_num_inputs(UseBiasNumInputs<Conv2DParam >)
119
+ .set_attr<FListInputNames>(" FListInputNames" , UseBiasListInputNames<Conv2DParam >)
120
120
.set_attr<FInferShape>(" FInferShape" , Conv2DInferShape)
121
121
.set_attr<FInferType>(" FInferType" , ElemwiseType<-1 , 1 >)
122
122
.set_support_level(2 );
123
123
124
124
125
- DMLC_REGISTER_PARAMETER (ConvTransposeParam );
125
+ DMLC_REGISTER_PARAMETER (Conv2DTransposeParam );
126
126
127
- inline bool ConvTransposeInferShape (const nnvm::NodeAttrs& attrs,
128
- std::vector<TShape>* in_shape,
129
- std::vector<TShape>* out_shape) {
130
- const ConvTransposeParam & param = nnvm::get<ConvTransposeParam >(attrs.parsed );
127
+ inline bool Conv2DTransposeInferShape (const nnvm::NodeAttrs& attrs,
128
+ std::vector<TShape>* in_shape,
129
+ std::vector<TShape>* out_shape) {
130
+ const Conv2DTransposeParam & param = nnvm::get<Conv2DTransposeParam >(attrs.parsed );
131
131
if (param.use_bias ) {
132
132
CHECK_EQ (in_shape->size (), 3U ) << " Input:[data, weight, bias]" ;
133
133
} else {
134
134
CHECK_EQ (in_shape->size (), 2U ) << " Input:[data, weight]" ;
135
135
}
136
136
CHECK_EQ (out_shape->size (), 1U );
137
- const TShape& dshape = (*in_shape)[ConvTransposeParam ::kData ];
137
+ const TShape& dshape = (*in_shape)[Conv2DTransposeParam ::kData ];
138
138
if (dshape.ndim () == 0 ) return false ;
139
139
TShape dshape_nchw = ConvertLayout (dshape, param.layout , kNCHW );
140
140
@@ -154,11 +154,11 @@ inline bool ConvTransposeInferShape(const nnvm::NodeAttrs& attrs,
154
154
param.kernel_size [0 ], param.kernel_size [1 ]});
155
155
wshape = ConvertLayout (wshape, kNCHW , param.layout );
156
156
157
- NNVM_ASSIGN_INPUT_SHAPE (attrs, *in_shape, ConvTransposeParam ::kWeight , wshape);
157
+ NNVM_ASSIGN_INPUT_SHAPE (attrs, *in_shape, Conv2DTransposeParam ::kWeight , wshape);
158
158
159
159
if (param.use_bias ) {
160
160
NNVM_ASSIGN_INPUT_SHAPE (attrs, *in_shape,
161
- ConvTransposeParam ::kBias ,
161
+ Conv2DTransposeParam ::kBias ,
162
162
TShape ({param.channels }));
163
163
}
164
164
// dilation
@@ -201,12 +201,12 @@ said convolution.
201
201
.add_argument(" data" , " 4D Tensor" , " Input data." )
202
202
.add_argument(" weight" , " 4D Tensor" , " Weight matrix." )
203
203
.add_argument(" bias" , " 1D Tensor" , " Bias parameter." )
204
- .add_arguments(ConvTransposeParam ::__FIELDS__())
205
- .set_attr_parser(ParamParser<ConvTransposeParam >)
204
+ .add_arguments(Conv2DTransposeParam ::__FIELDS__())
205
+ .set_attr_parser(ParamParser<Conv2DTransposeParam >)
206
206
.set_num_outputs(1 )
207
- .set_num_inputs(UseBiasNumInputs<ConvTransposeParam >)
208
- .set_attr<FListInputNames>(" FListInputNames" , UseBiasListInputNames<ConvTransposeParam >)
209
- .set_attr<FInferShape>(" FInferShape" , ConvTransposeInferShape )
207
+ .set_num_inputs(UseBiasNumInputs<Conv2DTransposeParam >)
208
+ .set_attr<FListInputNames>(" FListInputNames" , UseBiasListInputNames<Conv2DTransposeParam >)
209
+ .set_attr<FInferShape>(" FInferShape" , Conv2DTransposeInferShape )
210
210
.set_attr<FInferType>(" FInferType" , ElemwiseType<-1 , 1 >)
211
211
.set_support_level(2 );
212
212
0 commit comments