Skip to content

Removed extra 'an' in ext4 docs. #9

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from
Closed

Removed extra 'an' in ext4 docs. #9

wants to merge 1 commit into from

Conversation

smartinez87
Copy link

There as an extra 'an' in this doc, so I removed it.

@jacobh
Copy link

jacobh commented Sep 6, 2011

thankyou kind sir, your commit will not go unnoticed.

@bdonlan
Copy link
Contributor

bdonlan commented Sep 6, 2011

Please note that pull requests are not the proper procedure to submit patches to the Linux kernel (Linus put the kernel up here because kernel.org's master mirror is down; it seems that he doesn't like the pull request system[1], but github does not allow him to disable it). Please read Documentation/SubmittingPatches - you must write a proper commit message, add a Signed-Off-By line, and submit to the linux kernel mailing list, CCing the affected maintainers (ie, not Linus in most cases).

[1] - http://blueparen.com/node/12

@smartinez87
Copy link
Author

can you please point me at some url where I can read that submitting patches documentation? thanks!

@snarkyMcSnark
Copy link

smartinez87, this is pretty silly stuffs, these stunt-style pull requests that have been coming into this repo lately. Sure it's open source and you want to help fix it, but as bdonlan notes above, there are proper guidelines to be followed to submit patches to be fixed. A simpler solution (lifted wholesale from reddit here btw): someone volunteers to run the "typo in the readme" branch. People send pull requests to them. When that branch has a delta of more than a couple fucking kilobytes, then a reasonable pull request can be sent to the main project.

Also look at this link to the Kernel Janitors site please in the future for things related to code quality guidelines cleaner-uppers in the kernel.

Let's not distract and annoy Linus with such silly trivialities like this, it just makes you look like a jackass.

@dovydasm
Copy link

dovydasm commented Sep 6, 2011

Bravo!

@smartinez87
Copy link
Author

hey, I just don't care about this, just noticed the typo and wanted the people that can do something about this to know about it and fix it. If no one care about the docs, I care even less.

@smartinez87 smartinez87 closed this Sep 6, 2011
@VM2
Copy link

VM2 commented Sep 7, 2011

@snarkyMcSnark is right. @smartinez87 is just unnecessarily trying to create work for a high profile project just to be part of the commit history. His background points to the same. He claims to be a core contributor for the rails project although his entire commit history consists solely of frivolous grammatical and whitespace changes to the documentation. In fact he has no original commits for documentation either just small formatting changes to existing commits. This is entirely true.

@diegoviola, instead of you two trying to fix whitespace issues and unnecessarily trying to police other contributors you should work on something useful. These are all valid arguments and the original committer has a bad history of doing this and 3 people have already pointed that out.

damentz referenced this pull request in zen-kernel/zen-kernel Sep 27, 2011
commit fe47ae7 upstream.

The lockdep warning below detects a possible A->B/B->A locking
dependency of mm->mmap_sem and dcookie_mutex. The order in
sync_buffer() is mm->mmap_sem/dcookie_mutex, while in
sys_lookup_dcookie() it is vice versa.

Fixing it in sys_lookup_dcookie() by unlocking dcookie_mutex before
copy_to_user().

oprofiled/4432 is trying to acquire lock:
 (&mm->mmap_sem){++++++}, at: [<ffffffff810b444b>] might_fault+0x53/0xa3

but task is already holding lock:
 (dcookie_mutex){+.+.+.}, at: [<ffffffff81124d28>] sys_lookup_dcookie+0x45/0x149

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #1 (dcookie_mutex){+.+.+.}:
       [<ffffffff8106557f>] lock_acquire+0xf8/0x11e
       [<ffffffff814634f0>] mutex_lock_nested+0x63/0x309
       [<ffffffff81124e5c>] get_dcookie+0x30/0x144
       [<ffffffffa0000fba>] sync_buffer+0x196/0x3ec [oprofile]
       [<ffffffffa0001226>] task_exit_notify+0x16/0x1a [oprofile]
       [<ffffffff81467b96>] notifier_call_chain+0x37/0x63
       [<ffffffff8105803d>] __blocking_notifier_call_chain+0x50/0x67
       [<ffffffff81058068>] blocking_notifier_call_chain+0x14/0x16
       [<ffffffff8105a718>] profile_task_exit+0x1a/0x1c
       [<ffffffff81039e8f>] do_exit+0x2a/0x6fc
       [<ffffffff8103a5e4>] do_group_exit+0x83/0xae
       [<ffffffff8103a626>] sys_exit_group+0x17/0x1b
       [<ffffffff8146ad4b>] system_call_fastpath+0x16/0x1b

-> #0 (&mm->mmap_sem){++++++}:
       [<ffffffff81064dfb>] __lock_acquire+0x1085/0x1711
       [<ffffffff8106557f>] lock_acquire+0xf8/0x11e
       [<ffffffff810b4478>] might_fault+0x80/0xa3
       [<ffffffff81124de7>] sys_lookup_dcookie+0x104/0x149
       [<ffffffff8146ad4b>] system_call_fastpath+0x16/0x1b

other info that might help us debug this:

1 lock held by oprofiled/4432:
 #0:  (dcookie_mutex){+.+.+.}, at: [<ffffffff81124d28>] sys_lookup_dcookie+0x45/0x149

stack backtrace:
Pid: 4432, comm: oprofiled Not tainted 2.6.39-00008-ge5a450d #9
Call Trace:
 [<ffffffff81063193>] print_circular_bug+0xae/0xbc
 [<ffffffff81064dfb>] __lock_acquire+0x1085/0x1711
 [<ffffffff8102ef13>] ? get_parent_ip+0x11/0x42
 [<ffffffff810b444b>] ? might_fault+0x53/0xa3
 [<ffffffff8106557f>] lock_acquire+0xf8/0x11e
 [<ffffffff810b444b>] ? might_fault+0x53/0xa3
 [<ffffffff810d7d54>] ? path_put+0x22/0x27
 [<ffffffff810b4478>] might_fault+0x80/0xa3
 [<ffffffff810b444b>] ? might_fault+0x53/0xa3
 [<ffffffff81124de7>] sys_lookup_dcookie+0x104/0x149
 [<ffffffff8146ad4b>] system_call_fastpath+0x16/0x1b

References: https://bugzilla.kernel.org/show_bug.cgi?id=13809
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
pmundt pushed a commit to pmundt/linux-sh that referenced this pull request Oct 28, 2011
In commit 5ec094c "nfsd4: extend state
lock over seqid replay logic" I modified the exit logic of all the
seqid-based procedures except nfsd4_locku().  Fix the oversight.

The result of the bug was a double-unlock while handling the LOCKU
procedure, and a warning like:

[  142.150014] WARNING: at kernel/mutex-debug.c:78 debug_mutex_unlock+0xda/0xe0()
...
[  142.152927] Pid: 742, comm: nfsd Not tainted 3.1.0-rc1-SLIM+ torvalds#9
[  142.152927] Call Trace:
[  142.152927]  [<ffffffff8105fa4f>] warn_slowpath_common+0x7f/0xc0
[  142.152927]  [<ffffffff8105faaa>] warn_slowpath_null+0x1a/0x20
[  142.152927]  [<ffffffff810960ca>] debug_mutex_unlock+0xda/0xe0
[  142.152927]  [<ffffffff813e4200>] __mutex_unlock_slowpath+0x80/0x140
[  142.152927]  [<ffffffff813e42ce>] mutex_unlock+0xe/0x10
[  142.152927]  [<ffffffffa03bd3f5>] nfs4_lock_state+0x35/0x40 [nfsd]
[  142.152927]  [<ffffffffa03b0b71>] nfsd4_proc_compound+0x2a1/0x690
[nfsd]
[  142.152927]  [<ffffffffa039f9fb>] nfsd_dispatch+0xeb/0x230 [nfsd]
[  142.152927]  [<ffffffffa02b1055>] svc_process_common+0x345/0x690
[sunrpc]
[  142.152927]  [<ffffffff81058d10>] ? try_to_wake_up+0x280/0x280
[  142.152927]  [<ffffffffa02b16e2>] svc_process+0x102/0x150 [sunrpc]
[  142.152927]  [<ffffffffa039f0bd>] nfsd+0xbd/0x160 [nfsd]
[  142.152927]  [<ffffffffa039f000>] ? 0xffffffffa039efff
[  142.152927]  [<ffffffff8108230c>] kthread+0x8c/0xa0
[  142.152927]  [<ffffffff813e8694>] kernel_thread_helper+0x4/0x10
[  142.152927]  [<ffffffff81082280>] ? kthread_worker_fn+0x190/0x190
[  142.152927]  [<ffffffff813e8690>] ? gs_change+0x13/0x13

Reported-by: Bryan Schumaker <bjschuma@netapp.com>
Tested-by: Bryan Schumaker <bjschuma@netapp.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
torvalds pushed a commit that referenced this pull request Dec 15, 2011
If the pte mapping in generic_perform_write() is unmapped between
iov_iter_fault_in_readable() and iov_iter_copy_from_user_atomic(), the
"copied" parameter to ->end_write can be zero. ext4 couldn't cope with
it with delayed allocations enabled. This skips the i_disksize
enlargement logic if copied is zero and no new data was appeneded to
the inode.

 gdb> bt
 #0  0xffffffff811afe80 in ext4_da_should_update_i_disksize (file=0xffff88003f606a80, mapping=0xffff88001d3824e0, pos=0x1\
 08000, len=0x1000, copied=0x0, page=0xffffea0000d792e8, fsdata=0x0) at fs/ext4/inode.c:2467
 #1  ext4_da_write_end (file=0xffff88003f606a80, mapping=0xffff88001d3824e0, pos=0x108000, len=0x1000, copied=0x0, page=0\
 xffffea0000d792e8, fsdata=0x0) at fs/ext4/inode.c:2512
 #2  0xffffffff810d97f1 in generic_perform_write (iocb=<value optimized out>, iov=<value optimized out>, nr_segs=<value o\
 ptimized out>, pos=0x108000, ppos=0xffff88001e26be40, count=<value optimized out>, written=0x0) at mm/filemap.c:2440
 #3  generic_file_buffered_write (iocb=<value optimized out>, iov=<value optimized out>, nr_segs=<value optimized out>, p\
 os=0x108000, ppos=0xffff88001e26be40, count=<value optimized out>, written=0x0) at mm/filemap.c:2482
 #4  0xffffffff810db5d1 in __generic_file_aio_write (iocb=0xffff88001e26bde8, iov=0xffff88001e26bec8, nr_segs=0x1, ppos=0\
 xffff88001e26be40) at mm/filemap.c:2600
 #5  0xffffffff810db853 in generic_file_aio_write (iocb=0xffff88001e26bde8, iov=0xffff88001e26bec8, nr_segs=<value optimi\
 zed out>, pos=<value optimized out>) at mm/filemap.c:2632
 #6  0xffffffff811a71aa in ext4_file_write (iocb=0xffff88001e26bde8, iov=0xffff88001e26bec8, nr_segs=0x1, pos=0x108000) a\
 t fs/ext4/file.c:136
 #7  0xffffffff811375aa in do_sync_write (filp=0xffff88003f606a80, buf=<value optimized out>, len=<value optimized out>, \
 ppos=0xffff88001e26bf48) at fs/read_write.c:406
 #8  0xffffffff81137e56 in vfs_write (file=0xffff88003f606a80, buf=0x1ec2960 <Address 0x1ec2960 out of bounds>, count=0x4\
 000, pos=0xffff88001e26bf48) at fs/read_write.c:435
 #9  0xffffffff8113816c in sys_write (fd=<value optimized out>, buf=0x1ec2960 <Address 0x1ec2960 out of bounds>, count=0x\
 4000) at fs/read_write.c:487
 #10 <signal handler called>
 #11 0x00007f120077a390 in __brk_reservation_fn_dmi_alloc__ ()
 #12 0x0000000000000000 in ?? ()
 gdb> print offset
 $22 = 0xffffffffffffffff
 gdb> print idx
 $23 = 0xffffffff
 gdb> print inode->i_blkbits
 $24 = 0xc
 gdb> up
 #1  ext4_da_write_end (file=0xffff88003f606a80, mapping=0xffff88001d3824e0, pos=0x108000, len=0x1000, copied=0x0, page=0\
 xffffea0000d792e8, fsdata=0x0) at fs/ext4/inode.c:2512
 2512                    if (ext4_da_should_update_i_disksize(page, end)) {
 gdb> print start
 $25 = 0x0
 gdb> print end
 $26 = 0xffffffffffffffff
 gdb> print pos
 $27 = 0x108000
 gdb> print new_i_size
 $28 = 0x108000
 gdb> print ((struct ext4_inode_info *)((char *)inode-((int)(&((struct ext4_inode_info *)0)->vfs_inode))))->i_disksize
 $29 = 0xd9000
 gdb> down
 2467            for (i = 0; i < idx; i++)
 gdb> print i
 $30 = 0xd44acbee

This is 100% reproducible with some autonuma development code tuned in
a very aggressive manner (not normal way even for knumad) which does
"exotic" changes to the ptes. It wouldn't normally trigger but I don't
see why it can't happen normally if the page is added to swap cache in
between the two faults leading to "copied" being zero (which then
hangs in ext4). So it should be fixed. Especially possible with lumpy
reclaim (albeit disabled if compaction is enabled) as that would
ignore the young bits in the ptes.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: stable@kernel.org
em-and-m pushed a commit to em-and-m/linux that referenced this pull request Jan 8, 2012
qeth layer3 recovery invokes its set_multicast_list function, which
invokes function __vlan_find_dev_deep requiring rcu_read_lock or
rtnl lock. This causes kernel messages:

kernel: [ INFO: suspicious rcu_dereference_check() usage. ]
kernel: ---------------------------------------------------
kernel: net/8021q/vlan_core.c:70 invoked rcu_dereference_check() without protection!

kernel: stack backtrace:
kernel: CPU: 0 Not tainted 3.1.0 torvalds#9
kernel: Process qeth_recover (pid: 2078, task: 000000007e584680, ksp: 000000007e3e3930)
kernel: 000000007e3e3d08 000000007e3e3c88 0000000000000002 0000000000000000
kernel:       000000007e3e3d28 000000007e3e3ca0 000000007e3e3ca0 00000000005e77ce
kernel:       0000000000000000 0000000000000001 ffffffffffffffff 0000000000000001
kernel:       000000000000000d 000000000000000c 000000007e3e3cf0 0000000000000000
kernel:       0000000000000000 0000000000100a18 000000007e3e3c88 000000007e3e3cc8
kernel: Call Trace:
kernel: ([<0000000000100926>] show_trace+0xee/0x144)
kernel: [<00000000005d395c>] __vlan_find_dev_deep+0xb0/0x108
kernel: [<00000000004acd3a>] qeth_l3_set_multicast_list+0x976/0xe38
kernel: [<00000000004ae0f4>] __qeth_l3_set_online+0x75c/0x1498
kernel: [<00000000004aefec>] qeth_l3_recover+0xc4/0x1d0
kernel: [<0000000000185372>] kthread+0xa6/0xb0
kernel: [<00000000005ed4c6>] kernel_thread_starter+0x6/0xc
kernel: [<00000000005ed4c0>] kernel_thread_starter+0x0/0xc

The patch makes sure the rtnl lock is held once qeth recovery invokes
its set_multicast_list function.

Signed-off-by: Ursula Braun <ursula.braun@de.ibm.com>
Signed-off-by: Frank Blaschka <frank.blaschka@de.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
tworaz pushed a commit to tworaz/linux that referenced this pull request Jan 9, 2012
commit fe47ae7 upstream.

The lockdep warning below detects a possible A->B/B->A locking
dependency of mm->mmap_sem and dcookie_mutex. The order in
sync_buffer() is mm->mmap_sem/dcookie_mutex, while in
sys_lookup_dcookie() it is vice versa.

Fixing it in sys_lookup_dcookie() by unlocking dcookie_mutex before
copy_to_user().

oprofiled/4432 is trying to acquire lock:
 (&mm->mmap_sem){++++++}, at: [<ffffffff810b444b>] might_fault+0x53/0xa3

but task is already holding lock:
 (dcookie_mutex){+.+.+.}, at: [<ffffffff81124d28>] sys_lookup_dcookie+0x45/0x149

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #1 (dcookie_mutex){+.+.+.}:
       [<ffffffff8106557f>] lock_acquire+0xf8/0x11e
       [<ffffffff814634f0>] mutex_lock_nested+0x63/0x309
       [<ffffffff81124e5c>] get_dcookie+0x30/0x144
       [<ffffffffa0000fba>] sync_buffer+0x196/0x3ec [oprofile]
       [<ffffffffa0001226>] task_exit_notify+0x16/0x1a [oprofile]
       [<ffffffff81467b96>] notifier_call_chain+0x37/0x63
       [<ffffffff8105803d>] __blocking_notifier_call_chain+0x50/0x67
       [<ffffffff81058068>] blocking_notifier_call_chain+0x14/0x16
       [<ffffffff8105a718>] profile_task_exit+0x1a/0x1c
       [<ffffffff81039e8f>] do_exit+0x2a/0x6fc
       [<ffffffff8103a5e4>] do_group_exit+0x83/0xae
       [<ffffffff8103a626>] sys_exit_group+0x17/0x1b
       [<ffffffff8146ad4b>] system_call_fastpath+0x16/0x1b

-> #0 (&mm->mmap_sem){++++++}:
       [<ffffffff81064dfb>] __lock_acquire+0x1085/0x1711
       [<ffffffff8106557f>] lock_acquire+0xf8/0x11e
       [<ffffffff810b4478>] might_fault+0x80/0xa3
       [<ffffffff81124de7>] sys_lookup_dcookie+0x104/0x149
       [<ffffffff8146ad4b>] system_call_fastpath+0x16/0x1b

other info that might help us debug this:

1 lock held by oprofiled/4432:
 #0:  (dcookie_mutex){+.+.+.}, at: [<ffffffff81124d28>] sys_lookup_dcookie+0x45/0x149

stack backtrace:
Pid: 4432, comm: oprofiled Not tainted 2.6.39-00008-ge5a450d torvalds#9
Call Trace:
 [<ffffffff81063193>] print_circular_bug+0xae/0xbc
 [<ffffffff81064dfb>] __lock_acquire+0x1085/0x1711
 [<ffffffff8102ef13>] ? get_parent_ip+0x11/0x42
 [<ffffffff810b444b>] ? might_fault+0x53/0xa3
 [<ffffffff8106557f>] lock_acquire+0xf8/0x11e
 [<ffffffff810b444b>] ? might_fault+0x53/0xa3
 [<ffffffff810d7d54>] ? path_put+0x22/0x27
 [<ffffffff810b4478>] might_fault+0x80/0xa3
 [<ffffffff810b444b>] ? might_fault+0x53/0xa3
 [<ffffffff81124de7>] sys_lookup_dcookie+0x104/0x149
 [<ffffffff8146ad4b>] system_call_fastpath+0x16/0x1b

References: https://bugzilla.kernel.org/show_bug.cgi?id=13809
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Pfiver pushed a commit to Pfiver/linux that referenced this pull request Jan 16, 2012
$ wget "http://pkgs.fedoraproject.org/gitweb/?p=kernel.git;a=blob_plain;f=mac80211_offchannel_rework_revert.patch;h=859799714cd85a58450ecde4a1dabc5adffd5100;hb=refs/heads/f16" -O mac80211_offchannel_rework_revert.patch
$ patch -p1 --dry-run < mac80211_offchannel_rework_revert.patch
patching file net/mac80211/ieee80211_i.h
Hunk #1 succeeded at 702 (offset 8 lines).
Hunk #2 succeeded at 712 (offset 8 lines).
Hunk #3 succeeded at 1143 (offset -57 lines).
patching file net/mac80211/main.c
patching file net/mac80211/offchannel.c
Hunk #1 succeeded at 18 (offset 1 line).
Hunk #2 succeeded at 42 (offset 1 line).
Hunk #3 succeeded at 78 (offset 1 line).
Hunk #4 succeeded at 96 (offset 1 line).
Hunk #5 succeeded at 162 (offset 1 line).
Hunk torvalds#6 succeeded at 182 (offset 1 line).
patching file net/mac80211/rx.c
Hunk #1 succeeded at 421 (offset 4 lines).
Hunk #2 succeeded at 2864 (offset 87 lines).
patching file net/mac80211/scan.c
Hunk #1 succeeded at 213 (offset 1 line).
Hunk #2 succeeded at 256 (offset 2 lines).
Hunk #3 succeeded at 288 (offset 2 lines).
Hunk #4 succeeded at 333 (offset 2 lines).
Hunk #5 succeeded at 482 (offset 2 lines).
Hunk torvalds#6 succeeded at 498 (offset 2 lines).
Hunk torvalds#7 succeeded at 516 (offset 2 lines).
Hunk torvalds#8 succeeded at 530 (offset 2 lines).
Hunk torvalds#9 succeeded at 555 (offset 2 lines).
patching file net/mac80211/tx.c
Hunk #1 succeeded at 259 (offset 1 line).
patching file net/mac80211/work.c
Hunk #1 succeeded at 899 (offset -2 lines).
Hunk #2 succeeded at 949 (offset -2 lines).
Hunk #3 succeeded at 1046 (offset -2 lines).
Hunk #4 succeeded at 1054 (offset -2 lines).
jkstrick pushed a commit to jkstrick/linux that referenced this pull request Feb 11, 2012
If the netdev is already in NETREG_UNREGISTERING/_UNREGISTERED state, do not
update the real num tx queues. netdev_queue_update_kobjects() is already
called via remove_queue_kobjects() at NETREG_UNREGISTERING time. So, when
upper layer driver, e.g., FCoE protocol stack is monitoring the netdev
event of NETDEV_UNREGISTER and calls back to LLD ndo_fcoe_disable() to remove
extra queues allocated for FCoE, the associated txq sysfs kobjects are already
removed, and trying to update the real num queues would cause something like
below:

...
PID: 25138  TASK: ffff88021e64c440  CPU: 3   COMMAND: "kworker/3:3"
 #0 [ffff88021f007760] machine_kexec at ffffffff810226d9
 #1 [ffff88021f0077d0] crash_kexec at ffffffff81089d2d
 #2 [ffff88021f0078a0] oops_end at ffffffff813bca78
 #3 [ffff88021f0078d0] no_context at ffffffff81029e72
 #4 [ffff88021f007920] __bad_area_nosemaphore at ffffffff8102a155
 #5 [ffff88021f0079f0] bad_area_nosemaphore at ffffffff8102a23e
 torvalds#6 [ffff88021f007a00] do_page_fault at ffffffff813bf32e
 torvalds#7 [ffff88021f007b10] page_fault at ffffffff813bc045
    [exception RIP: sysfs_find_dirent+17]
    RIP: ffffffff81178611  RSP: ffff88021f007bc0  RFLAGS: 00010246
    RAX: ffff88021e64c440  RBX: ffffffff8156cc63  RCX: 0000000000000004
    RDX: ffffffff8156cc63  RSI: 0000000000000000  RDI: 0000000000000000
    RBP: ffff88021f007be0   R8: 0000000000000004   R9: 0000000000000008
    R10: ffffffff816fed00  R11: 0000000000000004  R12: 0000000000000000
    R13: ffffffff8156cc63  R14: 0000000000000000  R15: ffff8802222a0000
    ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
 torvalds#8 [ffff88021f007be8] sysfs_get_dirent at ffffffff81178c07
 torvalds#9 [ffff88021f007c18] sysfs_remove_group at ffffffff8117ac27
torvalds#10 [ffff88021f007c48] netdev_queue_update_kobjects at ffffffff813178f9
torvalds#11 [ffff88021f007c88] netif_set_real_num_tx_queues at ffffffff81303e38
torvalds#12 [ffff88021f007cc8] ixgbe_set_num_queues at ffffffffa0249763 [ixgbe]
torvalds#13 [ffff88021f007cf8] ixgbe_init_interrupt_scheme at ffffffffa024ea89 [ixgbe]
torvalds#14 [ffff88021f007d48] ixgbe_fcoe_disable at ffffffffa0267113 [ixgbe]
torvalds#15 [ffff88021f007d68] vlan_dev_fcoe_disable at ffffffffa014fef5 [8021q]
torvalds#16 [ffff88021f007d78] fcoe_interface_cleanup at ffffffffa02b7dfd [fcoe]
torvalds#17 [ffff88021f007df8] fcoe_destroy_work at ffffffffa02b7f08 [fcoe]
torvalds#18 [ffff88021f007e18] process_one_work at ffffffff8105d7ca
torvalds#19 [ffff88021f007e68] worker_thread at ffffffff81060513
torvalds#20 [ffff88021f007ee8] kthread at ffffffff810648b6
torvalds#21 [ffff88021f007f48] kernel_thread_helper at ffffffff813c40f4

Signed-off-by: Yi Zou <yi.zou@intel.com>
Tested-by: Ross Brattain <ross.b.brattain@intel.com>
Tested-by: Stephen Ko <stephen.s.ko@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
zachariasmaladroit pushed a commit to galaxys-cm7miui-kernel/linux that referenced this pull request Feb 11, 2012
If the netdev is already in NETREG_UNREGISTERING/_UNREGISTERED state, do not
update the real num tx queues. netdev_queue_update_kobjects() is already
called via remove_queue_kobjects() at NETREG_UNREGISTERING time. So, when
upper layer driver, e.g., FCoE protocol stack is monitoring the netdev
event of NETDEV_UNREGISTER and calls back to LLD ndo_fcoe_disable() to remove
extra queues allocated for FCoE, the associated txq sysfs kobjects are already
removed, and trying to update the real num queues would cause something like
below:

...
PID: 25138  TASK: ffff88021e64c440  CPU: 3   COMMAND: "kworker/3:3"
 #0 [ffff88021f007760] machine_kexec at ffffffff810226d9
 #1 [ffff88021f0077d0] crash_kexec at ffffffff81089d2d
 #2 [ffff88021f0078a0] oops_end at ffffffff813bca78
 #3 [ffff88021f0078d0] no_context at ffffffff81029e72
 #4 [ffff88021f007920] __bad_area_nosemaphore at ffffffff8102a155
 #5 [ffff88021f0079f0] bad_area_nosemaphore at ffffffff8102a23e
 torvalds#6 [ffff88021f007a00] do_page_fault at ffffffff813bf32e
 torvalds#7 [ffff88021f007b10] page_fault at ffffffff813bc045
    [exception RIP: sysfs_find_dirent+17]
    RIP: ffffffff81178611  RSP: ffff88021f007bc0  RFLAGS: 00010246
    RAX: ffff88021e64c440  RBX: ffffffff8156cc63  RCX: 0000000000000004
    RDX: ffffffff8156cc63  RSI: 0000000000000000  RDI: 0000000000000000
    RBP: ffff88021f007be0   R8: 0000000000000004   R9: 0000000000000008
    R10: ffffffff816fed00  R11: 0000000000000004  R12: 0000000000000000
    R13: ffffffff8156cc63  R14: 0000000000000000  R15: ffff8802222a0000
    ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
 torvalds#8 [ffff88021f007be8] sysfs_get_dirent at ffffffff81178c07
 torvalds#9 [ffff88021f007c18] sysfs_remove_group at ffffffff8117ac27
torvalds#10 [ffff88021f007c48] netdev_queue_update_kobjects at ffffffff813178f9
torvalds#11 [ffff88021f007c88] netif_set_real_num_tx_queues at ffffffff81303e38
torvalds#12 [ffff88021f007cc8] ixgbe_set_num_queues at ffffffffa0249763 [ixgbe]
torvalds#13 [ffff88021f007cf8] ixgbe_init_interrupt_scheme at ffffffffa024ea89 [ixgbe]
torvalds#14 [ffff88021f007d48] ixgbe_fcoe_disable at ffffffffa0267113 [ixgbe]
torvalds#15 [ffff88021f007d68] vlan_dev_fcoe_disable at ffffffffa014fef5 [8021q]
torvalds#16 [ffff88021f007d78] fcoe_interface_cleanup at ffffffffa02b7dfd [fcoe]
torvalds#17 [ffff88021f007df8] fcoe_destroy_work at ffffffffa02b7f08 [fcoe]
torvalds#18 [ffff88021f007e18] process_one_work at ffffffff8105d7ca
torvalds#19 [ffff88021f007e68] worker_thread at ffffffff81060513
torvalds#20 [ffff88021f007ee8] kthread at ffffffff810648b6
torvalds#21 [ffff88021f007f48] kernel_thread_helper at ffffffff813c40f4

Signed-off-by: Yi Zou <yi.zou@intel.com>
Tested-by: Ross Brattain <ross.b.brattain@intel.com>
Tested-by: Stephen Ko <stephen.s.ko@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
tworaz pushed a commit to tworaz/linux that referenced this pull request Feb 13, 2012
…S block during isolation for migration

commit 0bf380b upstream.

When isolating for migration, migration starts at the start of a zone
which is not necessarily pageblock aligned.  Further, it stops isolating
when COMPACT_CLUSTER_MAX pages are isolated so migrate_pfn is generally
not aligned.  This allows isolate_migratepages() to call pfn_to_page() on
an invalid PFN which can result in a crash.  This was originally reported
against a 3.0-based kernel with the following trace in a crash dump.

PID: 9902   TASK: d47aecd0  CPU: 0   COMMAND: "memcg_process_s"
 #0 [d72d3ad0] crash_kexec at c028cfdb
 #1 [d72d3b24] oops_end at c05c5322
 #2 [d72d3b38] __bad_area_nosemaphore at c0227e60
 #3 [d72d3bec] bad_area at c0227fb6
 #4 [d72d3c00] do_page_fault at c05c72e
 #5 [d72d3c80] error_code (via page_fault) at c05c47a4
    EAX: 00000000  EBX: 000c0000  ECX: 00000001  EDX: 00000807  EBP: 000c0000
    DS:  007b      ESI: 00000001  ES:  007b      EDI: f3000a80  GS:  6f50
    CS:  0060      EIP: c030b15a  ERR: ffffffff  EFLAGS: 00010002
 torvalds#6 [d72d3cb4] isolate_migratepages at c030b15a
 torvalds#7 [d72d3d14] zone_watermark_ok at c02d26cb
 torvalds#8 [d72d3d2c] compact_zone at c030b8d
 torvalds#9 [d72d3d68] compact_zone_order at c030bba1
torvalds#10 [d72d3db4] try_to_compact_pages at c030bc84
torvalds#11 [d72d3ddc] __alloc_pages_direct_compact at c02d61e7
torvalds#12 [d72d3e08] __alloc_pages_slowpath at c02d66c7
torvalds#13 [d72d3e78] __alloc_pages_nodemask at c02d6a97
torvalds#14 [d72d3eb8] alloc_pages_vma at c030a845
torvalds#15 [d72d3ed4] do_huge_pmd_anonymous_page at c03178eb
torvalds#16 [d72d3f00] handle_mm_fault at c02f36c6
torvalds#17 [d72d3f30] do_page_fault at c05c70ed
torvalds#18 [d72d3fb] error_code (via page_fault) at c05c47a4
    EAX: b71ff000  EBX: 00000001  ECX: 00001600  EDX: 00000431
    DS:  007b      ESI: 08048950  ES:  007b      EDI: bfaa3788
    SS:  007b      ESP: bfaa36e0  EBP: bfaa3828  GS:  6f50
    CS:  0073      EIP: 080487c8  ERR: ffffffff  EFLAGS: 00010202

It was also reported by Herbert van den Bergh against 3.1-based kernel
with the following snippet from the console log.

BUG: unable to handle kernel paging request at 01c00008
IP: [<c0522399>] isolate_migratepages+0x119/0x390
*pdpt = 000000002f7ce001 *pde = 0000000000000000

It is expected that it also affects 3.2.x and current mainline.

The problem is that pfn_valid is only called on the first PFN being
checked and that PFN is not necessarily aligned.  Lets say we have a case
like this

H = MAX_ORDER_NR_PAGES boundary
| = pageblock boundary
m = cc->migrate_pfn
f = cc->free_pfn
o = memory hole

H------|------H------|----m-Hoooooo|ooooooH-f----|------H

The migrate_pfn is just below a memory hole and the free scanner is beyond
the hole.  When isolate_migratepages started, it scans from migrate_pfn to
migrate_pfn+pageblock_nr_pages which is now in a memory hole.  It checks
pfn_valid() on the first PFN but then scans into the hole where there are
not necessarily valid struct pages.

This patch ensures that isolate_migratepages calls pfn_valid when
necessary.

Reported-by: Herbert van den Bergh <herbert.van.den.bergh@oracle.com>
Tested-by: Herbert van den Bergh <herbert.van.den.bergh@oracle.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
xXorAa pushed a commit to xXorAa/linux that referenced this pull request Feb 17, 2012
…S block during isolation for migration

commit 0bf380b upstream.

When isolating for migration, migration starts at the start of a zone
which is not necessarily pageblock aligned.  Further, it stops isolating
when COMPACT_CLUSTER_MAX pages are isolated so migrate_pfn is generally
not aligned.  This allows isolate_migratepages() to call pfn_to_page() on
an invalid PFN which can result in a crash.  This was originally reported
against a 3.0-based kernel with the following trace in a crash dump.

PID: 9902   TASK: d47aecd0  CPU: 0   COMMAND: "memcg_process_s"
 #0 [d72d3ad0] crash_kexec at c028cfdb
 #1 [d72d3b24] oops_end at c05c5322
 #2 [d72d3b38] __bad_area_nosemaphore at c0227e60
 #3 [d72d3bec] bad_area at c0227fb6
 #4 [d72d3c00] do_page_fault at c05c72e
 #5 [d72d3c80] error_code (via page_fault) at c05c47a4
    EAX: 00000000  EBX: 000c0000  ECX: 00000001  EDX: 00000807  EBP: 000c0000
    DS:  007b      ESI: 00000001  ES:  007b      EDI: f3000a80  GS:  6f50
    CS:  0060      EIP: c030b15a  ERR: ffffffff  EFLAGS: 00010002
 torvalds#6 [d72d3cb4] isolate_migratepages at c030b15a
 torvalds#7 [d72d3d14] zone_watermark_ok at c02d26cb
 torvalds#8 [d72d3d2c] compact_zone at c030b8d
 torvalds#9 [d72d3d68] compact_zone_order at c030bba1
torvalds#10 [d72d3db4] try_to_compact_pages at c030bc84
torvalds#11 [d72d3ddc] __alloc_pages_direct_compact at c02d61e7
torvalds#12 [d72d3e08] __alloc_pages_slowpath at c02d66c7
torvalds#13 [d72d3e78] __alloc_pages_nodemask at c02d6a97
torvalds#14 [d72d3eb8] alloc_pages_vma at c030a845
torvalds#15 [d72d3ed4] do_huge_pmd_anonymous_page at c03178eb
torvalds#16 [d72d3f00] handle_mm_fault at c02f36c6
torvalds#17 [d72d3f30] do_page_fault at c05c70ed
torvalds#18 [d72d3fb] error_code (via page_fault) at c05c47a4
    EAX: b71ff000  EBX: 00000001  ECX: 00001600  EDX: 00000431
    DS:  007b      ESI: 08048950  ES:  007b      EDI: bfaa3788
    SS:  007b      ESP: bfaa36e0  EBP: bfaa3828  GS:  6f50
    CS:  0073      EIP: 080487c8  ERR: ffffffff  EFLAGS: 00010202

It was also reported by Herbert van den Bergh against 3.1-based kernel
with the following snippet from the console log.

BUG: unable to handle kernel paging request at 01c00008
IP: [<c0522399>] isolate_migratepages+0x119/0x390
*pdpt = 000000002f7ce001 *pde = 0000000000000000

It is expected that it also affects 3.2.x and current mainline.

The problem is that pfn_valid is only called on the first PFN being
checked and that PFN is not necessarily aligned.  Lets say we have a case
like this

H = MAX_ORDER_NR_PAGES boundary
| = pageblock boundary
m = cc->migrate_pfn
f = cc->free_pfn
o = memory hole

H------|------H------|----m-Hoooooo|ooooooH-f----|------H

The migrate_pfn is just below a memory hole and the free scanner is beyond
the hole.  When isolate_migratepages started, it scans from migrate_pfn to
migrate_pfn+pageblock_nr_pages which is now in a memory hole.  It checks
pfn_valid() on the first PFN but then scans into the hole where there are
not necessarily valid struct pages.

This patch ensures that isolate_migratepages calls pfn_valid when
necessary.

Reported-by: Herbert van den Bergh <herbert.van.den.bergh@oracle.com>
Tested-by: Herbert van den Bergh <herbert.van.den.bergh@oracle.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
torvalds pushed a commit that referenced this pull request Feb 22, 2012
…s are not initialised

Current ARM local timer code registers CPUFREQ notifiers even in case
the twd_timer_setup() isn't called. That seems to be wrong and
would eventually lead to kernel crash on the CPU frequency transitions
on the SOCs where the local timer doesn't exist or broken because of
hardware BUG. Fix it by testing twd_evt and *__this_cpu_ptr(twd_evt).

The issue was observed with v3.3-rc3 and building an OMAP2+ kernel
on OMAP3 SOC which doesn't have TWD.

Below is the dump for reference :

 Unable to handle kernel paging request at virtual address 007e900
 pgd = cdc20000
 [007e9000] *pgd=00000000
 Internal error: Oops: 5 [#1] SMP
 Modules linked in:
 CPU: 0    Not tainted  (3.3.0-rc3-pm+debug+initramfs #9)
 PC is at twd_update_frequency+0x34/0x48
 LR is at twd_update_frequency+0x10/0x48
 pc : [<c001382c>]    lr : [<c0013808>]    psr: 60000093
 sp : ce311dd8  ip : 00000000  fp : 00000000
 r10: 00000000  r9 : 00000001  r8 : ce310000
 r7 : c0440458  r6 : c00137f8  r5 : 00000000  r4 : c0947a74
 r3 : 00000000  r2 : 007e9000  r1 : 00000000  r0 : 00000000
 Flags: nZCv  IRQs off  FIQs on  Mode SVC_32  ISA ARM  Segment usr
 Control: 10c5387d  Table: 8dc20019  DAC: 00000015
 Process sh (pid: 599, stack limit = 0xce3102f8)
 Stack: (0xce311dd8 to 0xce312000)
 1dc0:                                                       6000c
 1de0: 00000001 00000002 00000000 00000000 00000000 00000000 00000
 1e00: ffffffff c093d8f0 00000000 ce311ebc 00000001 00000001 ce310
 1e20: c001386c c0437c4c c0e95b60 c0e95ba8 00000001 c0e95bf ffff4
 1e40: 00000000 00000000 c005ef74 ce310000 c0435cf0 ce311ebc 00000
 1e60: ce352b40 0007a120 c08d5108 c08ba040 c08ba040 c005f030 00000
 1e80: c08bc554 c032fe2c 0007a120 c08d4b64 ce352b40 c08d8618 ffff8
 1ea0: c08ba040 c033364c ce311ecc c0433b50 00000002 ffffffea c0330
 1ec0: 0007a120 0007a120 22222201 00000000 22222222 00000000 ce357
 1ee0: ce3d6000 cdc2aed8 ce352ba0 c0470164 00000002 c032f47c 00034
 1f00: c0331cac ce352b40 00000007 c032f6d0 ce352bbc 0003d090 c0930
 1f20: c093d8bc c03306a4 00000007 ce311f80 00000007 cdc2aec0 ce358
 1f40: ce8d20c0 00000007 b6fe5000 ce311f80 00000007 ce310000 0000c
 1f60: c000de74 ce98740 ce8d20c0 b6fe5000 00000000 00000000 0000c
 1f80: 00000000 00000000 001fbac8 00000000 00000007 001fbac8 00004
 1fa0: c000df04 c000dd60 00000007 001fbac8 00000001 b6fe5000 00000
 1fc0: 00000007 001fbac8 00000007 00000004 b6fe5000 00000000 00202
 1fe0: 00000000 beb565f8 00101ffc 00008e8c 60000010 00000001 00000
 [<c001382c>] (twd_update_frequency+0x34/0x48) from [<c008ac4c>] )
 [<c008ac4c>] (smp_call_function_single+0x17c/0x1c8) from [<c0013)
 [<c0013890>] (twd_cpufreq_transition+0x24/0x30) from [<c0437c4c>)
 [<c0437c4c>] (notifier_call_chain+0x44/0x84) from [<c005efe4>] ()
 [<c005efe4>] (__srcu_notifier_call_chain+0x70/0xa4) from [<c005f)
 [<c005f030>] (srcu_notifier_call_chain+0x18/0x20) from [<c032fe2)
 [<c032fe2c>] (cpufreq_notify_transition+0xc8/0x1b0) from [<c0333)
 [<c033364c>] (omap_target+0x1b4/0x28c) from [<c032f47c>] (__cpuf)
 [<c032f47c>] (__cpufreq_driver_target+0x50/0x64) from [<c0331d24)
 [<c0331d24>] (cpufreq_set+0x78/0x98) from [<c032f6d0>] (store_sc)
 [<c032f6d0>] (store_scaling_setspeed+0x5c/0x74) from [<c03306a4>)
 [<c03306a4>] (store+0x58/0x74) from [<c014d868>] (sysfs_write_fi)
 [<c014d868>] (sysfs_write_file+0x80/0xb4) from [<c00f2c2c>] (vfs)
 [<c00f2c2c>] (vfs_write+0xa8/0x138) from [<c00f2e9c>] (sys_write)
 [<c00f2e9c>] (sys_write+0x40/0x6c) from [<c000dd60>] (ret_fast_s)
 Code: e594300c e792210c e1a01000 e5840004 (e7930002)
 ---[ end trace 5da3b5167c1ecdda ]---

Reported-by: Kevin Hilman <khilman@ti.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Kevin Hilman <khilman@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
koenkooi referenced this pull request in koenkooi/linux Feb 23, 2012
…S block during isolation for migration

commit 0bf380b upstream.

When isolating for migration, migration starts at the start of a zone
which is not necessarily pageblock aligned.  Further, it stops isolating
when COMPACT_CLUSTER_MAX pages are isolated so migrate_pfn is generally
not aligned.  This allows isolate_migratepages() to call pfn_to_page() on
an invalid PFN which can result in a crash.  This was originally reported
against a 3.0-based kernel with the following trace in a crash dump.

PID: 9902   TASK: d47aecd0  CPU: 0   COMMAND: "memcg_process_s"
 #0 [d72d3ad0] crash_kexec at c028cfdb
 #1 [d72d3b24] oops_end at c05c5322
 #2 [d72d3b38] __bad_area_nosemaphore at c0227e60
 #3 [d72d3bec] bad_area at c0227fb6
 #4 [d72d3c00] do_page_fault at c05c72e
 #5 [d72d3c80] error_code (via page_fault) at c05c47a4
    EAX: 00000000  EBX: 000c0000  ECX: 00000001  EDX: 00000807  EBP: 000c0000
    DS:  007b      ESI: 00000001  ES:  007b      EDI: f3000a80  GS:  6f50
    CS:  0060      EIP: c030b15a  ERR: ffffffff  EFLAGS: 00010002
 #6 [d72d3cb4] isolate_migratepages at c030b15a
 #7 [d72d3d14] zone_watermark_ok at c02d26cb
 #8 [d72d3d2c] compact_zone at c030b8d
 #9 [d72d3d68] compact_zone_order at c030bba1
torvalds#10 [d72d3db4] try_to_compact_pages at c030bc84
torvalds#11 [d72d3ddc] __alloc_pages_direct_compact at c02d61e7
torvalds#12 [d72d3e08] __alloc_pages_slowpath at c02d66c7
torvalds#13 [d72d3e78] __alloc_pages_nodemask at c02d6a97
torvalds#14 [d72d3eb8] alloc_pages_vma at c030a845
torvalds#15 [d72d3ed4] do_huge_pmd_anonymous_page at c03178eb
torvalds#16 [d72d3f00] handle_mm_fault at c02f36c6
torvalds#17 [d72d3f30] do_page_fault at c05c70ed
torvalds#18 [d72d3fb] error_code (via page_fault) at c05c47a4
    EAX: b71ff000  EBX: 00000001  ECX: 00001600  EDX: 00000431
    DS:  007b      ESI: 08048950  ES:  007b      EDI: bfaa3788
    SS:  007b      ESP: bfaa36e0  EBP: bfaa3828  GS:  6f50
    CS:  0073      EIP: 080487c8  ERR: ffffffff  EFLAGS: 00010202

It was also reported by Herbert van den Bergh against 3.1-based kernel
with the following snippet from the console log.

BUG: unable to handle kernel paging request at 01c00008
IP: [<c0522399>] isolate_migratepages+0x119/0x390
*pdpt = 000000002f7ce001 *pde = 0000000000000000

It is expected that it also affects 3.2.x and current mainline.

The problem is that pfn_valid is only called on the first PFN being
checked and that PFN is not necessarily aligned.  Lets say we have a case
like this

H = MAX_ORDER_NR_PAGES boundary
| = pageblock boundary
m = cc->migrate_pfn
f = cc->free_pfn
o = memory hole

H------|------H------|----m-Hoooooo|ooooooH-f----|------H

The migrate_pfn is just below a memory hole and the free scanner is beyond
the hole.  When isolate_migratepages started, it scans from migrate_pfn to
migrate_pfn+pageblock_nr_pages which is now in a memory hole.  It checks
pfn_valid() on the first PFN but then scans into the hole where there are
not necessarily valid struct pages.

This patch ensures that isolate_migratepages calls pfn_valid when
necessary.

Reported-by: Herbert van den Bergh <herbert.van.den.bergh@oracle.com>
Tested-by: Herbert van den Bergh <herbert.van.den.bergh@oracle.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
torvalds pushed a commit that referenced this pull request Feb 24, 2012
There is an issue when memcg unregisters events that were attached to
the same eventfd:

- On the first call mem_cgroup_usage_unregister_event() removes all
  events attached to a given eventfd, and if there were no events left,
  thresholds->primary would become NULL;

- Since there were several events registered, cgroups core will call
  mem_cgroup_usage_unregister_event() again, but now kernel will oops,
  as the function doesn't expect that threshold->primary may be NULL.

That's a good question whether mem_cgroup_usage_unregister_event()
should actually remove all events in one go, but nowadays it can't
do any better as cftype->unregister_event callback doesn't pass
any private event-associated cookie. So, let's fix the issue by
simply checking for threshold->primary.

FWIW, w/o the patch the following oops may be observed:

 BUG: unable to handle kernel NULL pointer dereference at 0000000000000004
 IP: [<ffffffff810be32c>] mem_cgroup_usage_unregister_event+0x9c/0x1f0
 Pid: 574, comm: kworker/0:2 Not tainted 3.3.0-rc4+ #9 Bochs Bochs
 RIP: 0010:[<ffffffff810be32c>]  [<ffffffff810be32c>] mem_cgroup_usage_unregister_event+0x9c/0x1f0
 RSP: 0018:ffff88001d0b9d60  EFLAGS: 00010246
 Process kworker/0:2 (pid: 574, threadinfo ffff88001d0b8000, task ffff88001de91cc0)
 Call Trace:
  [<ffffffff8107092b>] cgroup_event_remove+0x2b/0x60
  [<ffffffff8103db94>] process_one_work+0x174/0x450
  [<ffffffff8103e413>] worker_thread+0x123/0x2d0

Cc: stable <stable@vger.kernel.org>
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
koenkooi referenced this pull request in koenkooi/linux Mar 1, 2012
…S block during isolation for migration

commit 0bf380b upstream.

When isolating for migration, migration starts at the start of a zone
which is not necessarily pageblock aligned.  Further, it stops isolating
when COMPACT_CLUSTER_MAX pages are isolated so migrate_pfn is generally
not aligned.  This allows isolate_migratepages() to call pfn_to_page() on
an invalid PFN which can result in a crash.  This was originally reported
against a 3.0-based kernel with the following trace in a crash dump.

PID: 9902   TASK: d47aecd0  CPU: 0   COMMAND: "memcg_process_s"
 #0 [d72d3ad0] crash_kexec at c028cfdb
 #1 [d72d3b24] oops_end at c05c5322
 #2 [d72d3b38] __bad_area_nosemaphore at c0227e60
 #3 [d72d3bec] bad_area at c0227fb6
 #4 [d72d3c00] do_page_fault at c05c72e
 #5 [d72d3c80] error_code (via page_fault) at c05c47a4
    EAX: 00000000  EBX: 000c0000  ECX: 00000001  EDX: 00000807  EBP: 000c0000
    DS:  007b      ESI: 00000001  ES:  007b      EDI: f3000a80  GS:  6f50
    CS:  0060      EIP: c030b15a  ERR: ffffffff  EFLAGS: 00010002
 #6 [d72d3cb4] isolate_migratepages at c030b15a
 #7 [d72d3d14] zone_watermark_ok at c02d26cb
 #8 [d72d3d2c] compact_zone at c030b8d
 #9 [d72d3d68] compact_zone_order at c030bba1
torvalds#10 [d72d3db4] try_to_compact_pages at c030bc84
torvalds#11 [d72d3ddc] __alloc_pages_direct_compact at c02d61e7
torvalds#12 [d72d3e08] __alloc_pages_slowpath at c02d66c7
torvalds#13 [d72d3e78] __alloc_pages_nodemask at c02d6a97
torvalds#14 [d72d3eb8] alloc_pages_vma at c030a845
torvalds#15 [d72d3ed4] do_huge_pmd_anonymous_page at c03178eb
torvalds#16 [d72d3f00] handle_mm_fault at c02f36c6
torvalds#17 [d72d3f30] do_page_fault at c05c70ed
torvalds#18 [d72d3fb] error_code (via page_fault) at c05c47a4
    EAX: b71ff000  EBX: 00000001  ECX: 00001600  EDX: 00000431
    DS:  007b      ESI: 08048950  ES:  007b      EDI: bfaa3788
    SS:  007b      ESP: bfaa36e0  EBP: bfaa3828  GS:  6f50
    CS:  0073      EIP: 080487c8  ERR: ffffffff  EFLAGS: 00010202

It was also reported by Herbert van den Bergh against 3.1-based kernel
with the following snippet from the console log.

BUG: unable to handle kernel paging request at 01c00008
IP: [<c0522399>] isolate_migratepages+0x119/0x390
*pdpt = 000000002f7ce001 *pde = 0000000000000000

It is expected that it also affects 3.2.x and current mainline.

The problem is that pfn_valid is only called on the first PFN being
checked and that PFN is not necessarily aligned.  Lets say we have a case
like this

H = MAX_ORDER_NR_PAGES boundary
| = pageblock boundary
m = cc->migrate_pfn
f = cc->free_pfn
o = memory hole

H------|------H------|----m-Hoooooo|ooooooH-f----|------H

The migrate_pfn is just below a memory hole and the free scanner is beyond
the hole.  When isolate_migratepages started, it scans from migrate_pfn to
migrate_pfn+pageblock_nr_pages which is now in a memory hole.  It checks
pfn_valid() on the first PFN but then scans into the hole where there are
not necessarily valid struct pages.

This patch ensures that isolate_migratepages calls pfn_valid when
necessary.

Reported-by: Herbert van den Bergh <herbert.van.den.bergh@oracle.com>
Tested-by: Herbert van den Bergh <herbert.van.den.bergh@oracle.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
koenkooi referenced this pull request in koenkooi/linux Mar 19, 2012
…S block during isolation for migration

commit 0bf380b upstream.

When isolating for migration, migration starts at the start of a zone
which is not necessarily pageblock aligned.  Further, it stops isolating
when COMPACT_CLUSTER_MAX pages are isolated so migrate_pfn is generally
not aligned.  This allows isolate_migratepages() to call pfn_to_page() on
an invalid PFN which can result in a crash.  This was originally reported
against a 3.0-based kernel with the following trace in a crash dump.

PID: 9902   TASK: d47aecd0  CPU: 0   COMMAND: "memcg_process_s"
 #0 [d72d3ad0] crash_kexec at c028cfdb
 #1 [d72d3b24] oops_end at c05c5322
 #2 [d72d3b38] __bad_area_nosemaphore at c0227e60
 #3 [d72d3bec] bad_area at c0227fb6
 #4 [d72d3c00] do_page_fault at c05c72e
 #5 [d72d3c80] error_code (via page_fault) at c05c47a4
    EAX: 00000000  EBX: 000c0000  ECX: 00000001  EDX: 00000807  EBP: 000c0000
    DS:  007b      ESI: 00000001  ES:  007b      EDI: f3000a80  GS:  6f50
    CS:  0060      EIP: c030b15a  ERR: ffffffff  EFLAGS: 00010002
 #6 [d72d3cb4] isolate_migratepages at c030b15a
 #7 [d72d3d14] zone_watermark_ok at c02d26cb
 #8 [d72d3d2c] compact_zone at c030b8d
 #9 [d72d3d68] compact_zone_order at c030bba1
torvalds#10 [d72d3db4] try_to_compact_pages at c030bc84
torvalds#11 [d72d3ddc] __alloc_pages_direct_compact at c02d61e7
torvalds#12 [d72d3e08] __alloc_pages_slowpath at c02d66c7
torvalds#13 [d72d3e78] __alloc_pages_nodemask at c02d6a97
torvalds#14 [d72d3eb8] alloc_pages_vma at c030a845
torvalds#15 [d72d3ed4] do_huge_pmd_anonymous_page at c03178eb
torvalds#16 [d72d3f00] handle_mm_fault at c02f36c6
torvalds#17 [d72d3f30] do_page_fault at c05c70ed
torvalds#18 [d72d3fb] error_code (via page_fault) at c05c47a4
    EAX: b71ff000  EBX: 00000001  ECX: 00001600  EDX: 00000431
    DS:  007b      ESI: 08048950  ES:  007b      EDI: bfaa3788
    SS:  007b      ESP: bfaa36e0  EBP: bfaa3828  GS:  6f50
    CS:  0073      EIP: 080487c8  ERR: ffffffff  EFLAGS: 00010202

It was also reported by Herbert van den Bergh against 3.1-based kernel
with the following snippet from the console log.

BUG: unable to handle kernel paging request at 01c00008
IP: [<c0522399>] isolate_migratepages+0x119/0x390
*pdpt = 000000002f7ce001 *pde = 0000000000000000

It is expected that it also affects 3.2.x and current mainline.

The problem is that pfn_valid is only called on the first PFN being
checked and that PFN is not necessarily aligned.  Lets say we have a case
like this

H = MAX_ORDER_NR_PAGES boundary
| = pageblock boundary
m = cc->migrate_pfn
f = cc->free_pfn
o = memory hole

H------|------H------|----m-Hoooooo|ooooooH-f----|------H

The migrate_pfn is just below a memory hole and the free scanner is beyond
the hole.  When isolate_migratepages started, it scans from migrate_pfn to
migrate_pfn+pageblock_nr_pages which is now in a memory hole.  It checks
pfn_valid() on the first PFN but then scans into the hole where there are
not necessarily valid struct pages.

This patch ensures that isolate_migratepages calls pfn_valid when
necessary.

Reported-by: Herbert van den Bergh <herbert.van.den.bergh@oracle.com>
Tested-by: Herbert van den Bergh <herbert.van.den.bergh@oracle.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
koenkooi referenced this pull request in koenkooi/linux Mar 19, 2012
commit 371528c upstream.

There is an issue when memcg unregisters events that were attached to
the same eventfd:

- On the first call mem_cgroup_usage_unregister_event() removes all
  events attached to a given eventfd, and if there were no events left,
  thresholds->primary would become NULL;

- Since there were several events registered, cgroups core will call
  mem_cgroup_usage_unregister_event() again, but now kernel will oops,
  as the function doesn't expect that threshold->primary may be NULL.

That's a good question whether mem_cgroup_usage_unregister_event()
should actually remove all events in one go, but nowadays it can't
do any better as cftype->unregister_event callback doesn't pass
any private event-associated cookie. So, let's fix the issue by
simply checking for threshold->primary.

FWIW, w/o the patch the following oops may be observed:

 BUG: unable to handle kernel NULL pointer dereference at 0000000000000004
 IP: [<ffffffff810be32c>] mem_cgroup_usage_unregister_event+0x9c/0x1f0
 Pid: 574, comm: kworker/0:2 Not tainted 3.3.0-rc4+ #9 Bochs Bochs
 RIP: 0010:[<ffffffff810be32c>]  [<ffffffff810be32c>] mem_cgroup_usage_unregister_event+0x9c/0x1f0
 RSP: 0018:ffff88001d0b9d60  EFLAGS: 00010246
 Process kworker/0:2 (pid: 574, threadinfo ffff88001d0b8000, task ffff88001de91cc0)
 Call Trace:
  [<ffffffff8107092b>] cgroup_event_remove+0x2b/0x60
  [<ffffffff8103db94>] process_one_work+0x174/0x450
  [<ffffffff8103e413>] worker_thread+0x123/0x2d0

Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
koenkooi referenced this pull request in koenkooi/linux Mar 22, 2012
…S block during isolation for migration

commit 0bf380b upstream.

When isolating for migration, migration starts at the start of a zone
which is not necessarily pageblock aligned.  Further, it stops isolating
when COMPACT_CLUSTER_MAX pages are isolated so migrate_pfn is generally
not aligned.  This allows isolate_migratepages() to call pfn_to_page() on
an invalid PFN which can result in a crash.  This was originally reported
against a 3.0-based kernel with the following trace in a crash dump.

PID: 9902   TASK: d47aecd0  CPU: 0   COMMAND: "memcg_process_s"
 #0 [d72d3ad0] crash_kexec at c028cfdb
 #1 [d72d3b24] oops_end at c05c5322
 #2 [d72d3b38] __bad_area_nosemaphore at c0227e60
 #3 [d72d3bec] bad_area at c0227fb6
 #4 [d72d3c00] do_page_fault at c05c72e
 #5 [d72d3c80] error_code (via page_fault) at c05c47a4
    EAX: 00000000  EBX: 000c0000  ECX: 00000001  EDX: 00000807  EBP: 000c0000
    DS:  007b      ESI: 00000001  ES:  007b      EDI: f3000a80  GS:  6f50
    CS:  0060      EIP: c030b15a  ERR: ffffffff  EFLAGS: 00010002
 #6 [d72d3cb4] isolate_migratepages at c030b15a
 #7 [d72d3d14] zone_watermark_ok at c02d26cb
 #8 [d72d3d2c] compact_zone at c030b8d
 #9 [d72d3d68] compact_zone_order at c030bba1
torvalds#10 [d72d3db4] try_to_compact_pages at c030bc84
torvalds#11 [d72d3ddc] __alloc_pages_direct_compact at c02d61e7
torvalds#12 [d72d3e08] __alloc_pages_slowpath at c02d66c7
torvalds#13 [d72d3e78] __alloc_pages_nodemask at c02d6a97
torvalds#14 [d72d3eb8] alloc_pages_vma at c030a845
torvalds#15 [d72d3ed4] do_huge_pmd_anonymous_page at c03178eb
torvalds#16 [d72d3f00] handle_mm_fault at c02f36c6
torvalds#17 [d72d3f30] do_page_fault at c05c70ed
torvalds#18 [d72d3fb] error_code (via page_fault) at c05c47a4
    EAX: b71ff000  EBX: 00000001  ECX: 00001600  EDX: 00000431
    DS:  007b      ESI: 08048950  ES:  007b      EDI: bfaa3788
    SS:  007b      ESP: bfaa36e0  EBP: bfaa3828  GS:  6f50
    CS:  0073      EIP: 080487c8  ERR: ffffffff  EFLAGS: 00010202

It was also reported by Herbert van den Bergh against 3.1-based kernel
with the following snippet from the console log.

BUG: unable to handle kernel paging request at 01c00008
IP: [<c0522399>] isolate_migratepages+0x119/0x390
*pdpt = 000000002f7ce001 *pde = 0000000000000000

It is expected that it also affects 3.2.x and current mainline.

The problem is that pfn_valid is only called on the first PFN being
checked and that PFN is not necessarily aligned.  Lets say we have a case
like this

H = MAX_ORDER_NR_PAGES boundary
| = pageblock boundary
m = cc->migrate_pfn
f = cc->free_pfn
o = memory hole

H------|------H------|----m-Hoooooo|ooooooH-f----|------H

The migrate_pfn is just below a memory hole and the free scanner is beyond
the hole.  When isolate_migratepages started, it scans from migrate_pfn to
migrate_pfn+pageblock_nr_pages which is now in a memory hole.  It checks
pfn_valid() on the first PFN but then scans into the hole where there are
not necessarily valid struct pages.

This patch ensures that isolate_migratepages calls pfn_valid when
necessary.

Reported-by: Herbert van den Bergh <herbert.van.den.bergh@oracle.com>
Tested-by: Herbert van den Bergh <herbert.van.den.bergh@oracle.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
koenkooi referenced this pull request in koenkooi/linux Mar 22, 2012
commit 371528c upstream.

There is an issue when memcg unregisters events that were attached to
the same eventfd:

- On the first call mem_cgroup_usage_unregister_event() removes all
  events attached to a given eventfd, and if there were no events left,
  thresholds->primary would become NULL;

- Since there were several events registered, cgroups core will call
  mem_cgroup_usage_unregister_event() again, but now kernel will oops,
  as the function doesn't expect that threshold->primary may be NULL.

That's a good question whether mem_cgroup_usage_unregister_event()
should actually remove all events in one go, but nowadays it can't
do any better as cftype->unregister_event callback doesn't pass
any private event-associated cookie. So, let's fix the issue by
simply checking for threshold->primary.

FWIW, w/o the patch the following oops may be observed:

 BUG: unable to handle kernel NULL pointer dereference at 0000000000000004
 IP: [<ffffffff810be32c>] mem_cgroup_usage_unregister_event+0x9c/0x1f0
 Pid: 574, comm: kworker/0:2 Not tainted 3.3.0-rc4+ #9 Bochs Bochs
 RIP: 0010:[<ffffffff810be32c>]  [<ffffffff810be32c>] mem_cgroup_usage_unregister_event+0x9c/0x1f0
 RSP: 0018:ffff88001d0b9d60  EFLAGS: 00010246
 Process kworker/0:2 (pid: 574, threadinfo ffff88001d0b8000, task ffff88001de91cc0)
 Call Trace:
  [<ffffffff8107092b>] cgroup_event_remove+0x2b/0x60
  [<ffffffff8103db94>] process_one_work+0x174/0x450
  [<ffffffff8103e413>] worker_thread+0x123/0x2d0

Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
koenkooi referenced this pull request in koenkooi/linux Apr 2, 2012
…S block during isolation for migration

commit 0bf380b upstream.

When isolating for migration, migration starts at the start of a zone
which is not necessarily pageblock aligned.  Further, it stops isolating
when COMPACT_CLUSTER_MAX pages are isolated so migrate_pfn is generally
not aligned.  This allows isolate_migratepages() to call pfn_to_page() on
an invalid PFN which can result in a crash.  This was originally reported
against a 3.0-based kernel with the following trace in a crash dump.

PID: 9902   TASK: d47aecd0  CPU: 0   COMMAND: "memcg_process_s"
 #0 [d72d3ad0] crash_kexec at c028cfdb
 #1 [d72d3b24] oops_end at c05c5322
 #2 [d72d3b38] __bad_area_nosemaphore at c0227e60
 #3 [d72d3bec] bad_area at c0227fb6
 #4 [d72d3c00] do_page_fault at c05c72e
 #5 [d72d3c80] error_code (via page_fault) at c05c47a4
    EAX: 00000000  EBX: 000c0000  ECX: 00000001  EDX: 00000807  EBP: 000c0000
    DS:  007b      ESI: 00000001  ES:  007b      EDI: f3000a80  GS:  6f50
    CS:  0060      EIP: c030b15a  ERR: ffffffff  EFLAGS: 00010002
 #6 [d72d3cb4] isolate_migratepages at c030b15a
 #7 [d72d3d14] zone_watermark_ok at c02d26cb
 #8 [d72d3d2c] compact_zone at c030b8d
 #9 [d72d3d68] compact_zone_order at c030bba1
torvalds#10 [d72d3db4] try_to_compact_pages at c030bc84
torvalds#11 [d72d3ddc] __alloc_pages_direct_compact at c02d61e7
torvalds#12 [d72d3e08] __alloc_pages_slowpath at c02d66c7
torvalds#13 [d72d3e78] __alloc_pages_nodemask at c02d6a97
torvalds#14 [d72d3eb8] alloc_pages_vma at c030a845
torvalds#15 [d72d3ed4] do_huge_pmd_anonymous_page at c03178eb
torvalds#16 [d72d3f00] handle_mm_fault at c02f36c6
torvalds#17 [d72d3f30] do_page_fault at c05c70ed
torvalds#18 [d72d3fb] error_code (via page_fault) at c05c47a4
    EAX: b71ff000  EBX: 00000001  ECX: 00001600  EDX: 00000431
    DS:  007b      ESI: 08048950  ES:  007b      EDI: bfaa3788
    SS:  007b      ESP: bfaa36e0  EBP: bfaa3828  GS:  6f50
    CS:  0073      EIP: 080487c8  ERR: ffffffff  EFLAGS: 00010202

It was also reported by Herbert van den Bergh against 3.1-based kernel
with the following snippet from the console log.

BUG: unable to handle kernel paging request at 01c00008
IP: [<c0522399>] isolate_migratepages+0x119/0x390
*pdpt = 000000002f7ce001 *pde = 0000000000000000

It is expected that it also affects 3.2.x and current mainline.

The problem is that pfn_valid is only called on the first PFN being
checked and that PFN is not necessarily aligned.  Lets say we have a case
like this

H = MAX_ORDER_NR_PAGES boundary
| = pageblock boundary
m = cc->migrate_pfn
f = cc->free_pfn
o = memory hole

H------|------H------|----m-Hoooooo|ooooooH-f----|------H

The migrate_pfn is just below a memory hole and the free scanner is beyond
the hole.  When isolate_migratepages started, it scans from migrate_pfn to
migrate_pfn+pageblock_nr_pages which is now in a memory hole.  It checks
pfn_valid() on the first PFN but then scans into the hole where there are
not necessarily valid struct pages.

This patch ensures that isolate_migratepages calls pfn_valid when
necessary.

Reported-by: Herbert van den Bergh <herbert.van.den.bergh@oracle.com>
Tested-by: Herbert van den Bergh <herbert.van.den.bergh@oracle.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
koenkooi referenced this pull request in koenkooi/linux Apr 2, 2012
commit 371528c upstream.

There is an issue when memcg unregisters events that were attached to
the same eventfd:

- On the first call mem_cgroup_usage_unregister_event() removes all
  events attached to a given eventfd, and if there were no events left,
  thresholds->primary would become NULL;

- Since there were several events registered, cgroups core will call
  mem_cgroup_usage_unregister_event() again, but now kernel will oops,
  as the function doesn't expect that threshold->primary may be NULL.

That's a good question whether mem_cgroup_usage_unregister_event()
should actually remove all events in one go, but nowadays it can't
do any better as cftype->unregister_event callback doesn't pass
any private event-associated cookie. So, let's fix the issue by
simply checking for threshold->primary.

FWIW, w/o the patch the following oops may be observed:

 BUG: unable to handle kernel NULL pointer dereference at 0000000000000004
 IP: [<ffffffff810be32c>] mem_cgroup_usage_unregister_event+0x9c/0x1f0
 Pid: 574, comm: kworker/0:2 Not tainted 3.3.0-rc4+ #9 Bochs Bochs
 RIP: 0010:[<ffffffff810be32c>]  [<ffffffff810be32c>] mem_cgroup_usage_unregister_event+0x9c/0x1f0
 RSP: 0018:ffff88001d0b9d60  EFLAGS: 00010246
 Process kworker/0:2 (pid: 574, threadinfo ffff88001d0b8000, task ffff88001de91cc0)
 Call Trace:
  [<ffffffff8107092b>] cgroup_event_remove+0x2b/0x60
  [<ffffffff8103db94>] process_one_work+0x174/0x450
  [<ffffffff8103e413>] worker_thread+0x123/0x2d0

Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
fossdd pushed a commit to fossdd/linux that referenced this pull request Jul 10, 2025
[ Upstream commit 6c7ffc9 ]

Remove redundant netif_napi_del() call from disconnect path.

A WARN may be triggered in __netif_napi_del_locked() during USB device
disconnect:

  WARNING: CPU: 0 PID: 11 at net/core/dev.c:7417 __netif_napi_del_locked+0x2b4/0x350

This happens because netif_napi_del() is called in the disconnect path while
NAPI is still enabled. However, it is not necessary to call netif_napi_del()
explicitly, since unregister_netdev() will handle NAPI teardown automatically
and safely. Removing the redundant call avoids triggering the warning.

Full trace:
 lan78xx 1-1:1.0 enu1: Failed to read register index 0x000000c4. ret = -ENODEV
 lan78xx 1-1:1.0 enu1: Failed to set MAC down with error -ENODEV
 lan78xx 1-1:1.0 enu1: Link is Down
 lan78xx 1-1:1.0 enu1: Failed to read register index 0x00000120. ret = -ENODEV
 ------------[ cut here ]------------
 WARNING: CPU: 0 PID: 11 at net/core/dev.c:7417 __netif_napi_del_locked+0x2b4/0x350
 Modules linked in: flexcan can_dev fuse
 CPU: 0 UID: 0 PID: 11 Comm: kworker/0:1 Not tainted 6.16.0-rc2-00624-ge926949dab03 torvalds#9 PREEMPT
 Hardware name: SKOV IMX8MP CPU revC - bd500 (DT)
 Workqueue: usb_hub_wq hub_event
 pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
 pc : __netif_napi_del_locked+0x2b4/0x350
 lr : __netif_napi_del_locked+0x7c/0x350
 sp : ffffffc085b673c0
 x29: ffffffc085b673c0 x28: ffffff800b7f2000 x27: ffffff800b7f20d8
 x26: ffffff80110bcf58 x25: ffffff80110bd978 x24: 1ffffff0022179eb
 x23: ffffff80110bc000 x22: ffffff800b7f5000 x21: ffffff80110bc000
 x20: ffffff80110bcf38 x19: ffffff80110bcf28 x18: dfffffc000000000
 x17: ffffffc081578940 x16: ffffffc08284cee0 x15: 0000000000000028
 x14: 0000000000000006 x13: 0000000000040000 x12: ffffffb0022179e8
 x11: 1ffffff0022179e7 x10: ffffffb0022179e7 x9 : dfffffc000000000
 x8 : 0000004ffdde8619 x7 : ffffff80110bcf3f x6 : 0000000000000001
 x5 : ffffff80110bcf38 x4 : ffffff80110bcf38 x3 : 0000000000000000
 x2 : 0000000000000000 x1 : 1ffffff0022179e7 x0 : 0000000000000000
 Call trace:
  __netif_napi_del_locked+0x2b4/0x350 (P)
  lan78xx_disconnect+0xf4/0x360
  usb_unbind_interface+0x158/0x718
  device_remove+0x100/0x150
  device_release_driver_internal+0x308/0x478
  device_release_driver+0x1c/0x30
  bus_remove_device+0x1a8/0x368
  device_del+0x2e0/0x7b0
  usb_disable_device+0x244/0x540
  usb_disconnect+0x220/0x758
  hub_event+0x105c/0x35e0
  process_one_work+0x760/0x17b0
  worker_thread+0x768/0xce8
  kthread+0x3bc/0x690
  ret_from_fork+0x10/0x20
 irq event stamp: 211604
 hardirqs last  enabled at (211603): [<ffffffc0828cc9ec>] _raw_spin_unlock_irqrestore+0x84/0x98
 hardirqs last disabled at (211604): [<ffffffc0828a9a84>] el1_dbg+0x24/0x80
 softirqs last  enabled at (211296): [<ffffffc080095f10>] handle_softirqs+0x820/0xbc8
 softirqs last disabled at (210993): [<ffffffc080010288>] __do_softirq+0x18/0x20
 ---[ end trace 0000000000000000 ]---
 lan78xx 1-1:1.0 enu1: failed to kill vid 0081/0

Fixes: ec4c7e1 ("lan78xx: Introduce NAPI polling support")
Suggested-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Oleksij Rempel <o.rempel@pengutronix.de>
Link: https://patch.msgid.link/20250627051346.276029-1-o.rempel@pengutronix.de
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
1054009064 pushed a commit to 1054009064/linux that referenced this pull request Jul 10, 2025
[ Upstream commit 6c7ffc9 ]

Remove redundant netif_napi_del() call from disconnect path.

A WARN may be triggered in __netif_napi_del_locked() during USB device
disconnect:

  WARNING: CPU: 0 PID: 11 at net/core/dev.c:7417 __netif_napi_del_locked+0x2b4/0x350

This happens because netif_napi_del() is called in the disconnect path while
NAPI is still enabled. However, it is not necessary to call netif_napi_del()
explicitly, since unregister_netdev() will handle NAPI teardown automatically
and safely. Removing the redundant call avoids triggering the warning.

Full trace:
 lan78xx 1-1:1.0 enu1: Failed to read register index 0x000000c4. ret = -ENODEV
 lan78xx 1-1:1.0 enu1: Failed to set MAC down with error -ENODEV
 lan78xx 1-1:1.0 enu1: Link is Down
 lan78xx 1-1:1.0 enu1: Failed to read register index 0x00000120. ret = -ENODEV
 ------------[ cut here ]------------
 WARNING: CPU: 0 PID: 11 at net/core/dev.c:7417 __netif_napi_del_locked+0x2b4/0x350
 Modules linked in: flexcan can_dev fuse
 CPU: 0 UID: 0 PID: 11 Comm: kworker/0:1 Not tainted 6.16.0-rc2-00624-ge926949dab03 torvalds#9 PREEMPT
 Hardware name: SKOV IMX8MP CPU revC - bd500 (DT)
 Workqueue: usb_hub_wq hub_event
 pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
 pc : __netif_napi_del_locked+0x2b4/0x350
 lr : __netif_napi_del_locked+0x7c/0x350
 sp : ffffffc085b673c0
 x29: ffffffc085b673c0 x28: ffffff800b7f2000 x27: ffffff800b7f20d8
 x26: ffffff80110bcf58 x25: ffffff80110bd978 x24: 1ffffff0022179eb
 x23: ffffff80110bc000 x22: ffffff800b7f5000 x21: ffffff80110bc000
 x20: ffffff80110bcf38 x19: ffffff80110bcf28 x18: dfffffc000000000
 x17: ffffffc081578940 x16: ffffffc08284cee0 x15: 0000000000000028
 x14: 0000000000000006 x13: 0000000000040000 x12: ffffffb0022179e8
 x11: 1ffffff0022179e7 x10: ffffffb0022179e7 x9 : dfffffc000000000
 x8 : 0000004ffdde8619 x7 : ffffff80110bcf3f x6 : 0000000000000001
 x5 : ffffff80110bcf38 x4 : ffffff80110bcf38 x3 : 0000000000000000
 x2 : 0000000000000000 x1 : 1ffffff0022179e7 x0 : 0000000000000000
 Call trace:
  __netif_napi_del_locked+0x2b4/0x350 (P)
  lan78xx_disconnect+0xf4/0x360
  usb_unbind_interface+0x158/0x718
  device_remove+0x100/0x150
  device_release_driver_internal+0x308/0x478
  device_release_driver+0x1c/0x30
  bus_remove_device+0x1a8/0x368
  device_del+0x2e0/0x7b0
  usb_disable_device+0x244/0x540
  usb_disconnect+0x220/0x758
  hub_event+0x105c/0x35e0
  process_one_work+0x760/0x17b0
  worker_thread+0x768/0xce8
  kthread+0x3bc/0x690
  ret_from_fork+0x10/0x20
 irq event stamp: 211604
 hardirqs last  enabled at (211603): [<ffffffc0828cc9ec>] _raw_spin_unlock_irqrestore+0x84/0x98
 hardirqs last disabled at (211604): [<ffffffc0828a9a84>] el1_dbg+0x24/0x80
 softirqs last  enabled at (211296): [<ffffffc080095f10>] handle_softirqs+0x820/0xbc8
 softirqs last disabled at (210993): [<ffffffc080010288>] __do_softirq+0x18/0x20
 ---[ end trace 0000000000000000 ]---
 lan78xx 1-1:1.0 enu1: failed to kill vid 0081/0

Fixes: ec4c7e1 ("lan78xx: Introduce NAPI polling support")
Suggested-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Oleksij Rempel <o.rempel@pengutronix.de>
Link: https://patch.msgid.link/20250627051346.276029-1-o.rempel@pengutronix.de
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
1054009064 pushed a commit to 1054009064/linux that referenced this pull request Jul 10, 2025
[ Upstream commit 6c7ffc9 ]

Remove redundant netif_napi_del() call from disconnect path.

A WARN may be triggered in __netif_napi_del_locked() during USB device
disconnect:

  WARNING: CPU: 0 PID: 11 at net/core/dev.c:7417 __netif_napi_del_locked+0x2b4/0x350

This happens because netif_napi_del() is called in the disconnect path while
NAPI is still enabled. However, it is not necessary to call netif_napi_del()
explicitly, since unregister_netdev() will handle NAPI teardown automatically
and safely. Removing the redundant call avoids triggering the warning.

Full trace:
 lan78xx 1-1:1.0 enu1: Failed to read register index 0x000000c4. ret = -ENODEV
 lan78xx 1-1:1.0 enu1: Failed to set MAC down with error -ENODEV
 lan78xx 1-1:1.0 enu1: Link is Down
 lan78xx 1-1:1.0 enu1: Failed to read register index 0x00000120. ret = -ENODEV
 ------------[ cut here ]------------
 WARNING: CPU: 0 PID: 11 at net/core/dev.c:7417 __netif_napi_del_locked+0x2b4/0x350
 Modules linked in: flexcan can_dev fuse
 CPU: 0 UID: 0 PID: 11 Comm: kworker/0:1 Not tainted 6.16.0-rc2-00624-ge926949dab03 torvalds#9 PREEMPT
 Hardware name: SKOV IMX8MP CPU revC - bd500 (DT)
 Workqueue: usb_hub_wq hub_event
 pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
 pc : __netif_napi_del_locked+0x2b4/0x350
 lr : __netif_napi_del_locked+0x7c/0x350
 sp : ffffffc085b673c0
 x29: ffffffc085b673c0 x28: ffffff800b7f2000 x27: ffffff800b7f20d8
 x26: ffffff80110bcf58 x25: ffffff80110bd978 x24: 1ffffff0022179eb
 x23: ffffff80110bc000 x22: ffffff800b7f5000 x21: ffffff80110bc000
 x20: ffffff80110bcf38 x19: ffffff80110bcf28 x18: dfffffc000000000
 x17: ffffffc081578940 x16: ffffffc08284cee0 x15: 0000000000000028
 x14: 0000000000000006 x13: 0000000000040000 x12: ffffffb0022179e8
 x11: 1ffffff0022179e7 x10: ffffffb0022179e7 x9 : dfffffc000000000
 x8 : 0000004ffdde8619 x7 : ffffff80110bcf3f x6 : 0000000000000001
 x5 : ffffff80110bcf38 x4 : ffffff80110bcf38 x3 : 0000000000000000
 x2 : 0000000000000000 x1 : 1ffffff0022179e7 x0 : 0000000000000000
 Call trace:
  __netif_napi_del_locked+0x2b4/0x350 (P)
  lan78xx_disconnect+0xf4/0x360
  usb_unbind_interface+0x158/0x718
  device_remove+0x100/0x150
  device_release_driver_internal+0x308/0x478
  device_release_driver+0x1c/0x30
  bus_remove_device+0x1a8/0x368
  device_del+0x2e0/0x7b0
  usb_disable_device+0x244/0x540
  usb_disconnect+0x220/0x758
  hub_event+0x105c/0x35e0
  process_one_work+0x760/0x17b0
  worker_thread+0x768/0xce8
  kthread+0x3bc/0x690
  ret_from_fork+0x10/0x20
 irq event stamp: 211604
 hardirqs last  enabled at (211603): [<ffffffc0828cc9ec>] _raw_spin_unlock_irqrestore+0x84/0x98
 hardirqs last disabled at (211604): [<ffffffc0828a9a84>] el1_dbg+0x24/0x80
 softirqs last  enabled at (211296): [<ffffffc080095f10>] handle_softirqs+0x820/0xbc8
 softirqs last disabled at (210993): [<ffffffc080010288>] __do_softirq+0x18/0x20
 ---[ end trace 0000000000000000 ]---
 lan78xx 1-1:1.0 enu1: failed to kill vid 0081/0

Fixes: ec4c7e1 ("lan78xx: Introduce NAPI polling support")
Suggested-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Oleksij Rempel <o.rempel@pengutronix.de>
Link: https://patch.msgid.link/20250627051346.276029-1-o.rempel@pengutronix.de
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
1054009064 pushed a commit to 1054009064/linux that referenced this pull request Jul 10, 2025
[ Upstream commit 6c7ffc9 ]

Remove redundant netif_napi_del() call from disconnect path.

A WARN may be triggered in __netif_napi_del_locked() during USB device
disconnect:

  WARNING: CPU: 0 PID: 11 at net/core/dev.c:7417 __netif_napi_del_locked+0x2b4/0x350

This happens because netif_napi_del() is called in the disconnect path while
NAPI is still enabled. However, it is not necessary to call netif_napi_del()
explicitly, since unregister_netdev() will handle NAPI teardown automatically
and safely. Removing the redundant call avoids triggering the warning.

Full trace:
 lan78xx 1-1:1.0 enu1: Failed to read register index 0x000000c4. ret = -ENODEV
 lan78xx 1-1:1.0 enu1: Failed to set MAC down with error -ENODEV
 lan78xx 1-1:1.0 enu1: Link is Down
 lan78xx 1-1:1.0 enu1: Failed to read register index 0x00000120. ret = -ENODEV
 ------------[ cut here ]------------
 WARNING: CPU: 0 PID: 11 at net/core/dev.c:7417 __netif_napi_del_locked+0x2b4/0x350
 Modules linked in: flexcan can_dev fuse
 CPU: 0 UID: 0 PID: 11 Comm: kworker/0:1 Not tainted 6.16.0-rc2-00624-ge926949dab03 torvalds#9 PREEMPT
 Hardware name: SKOV IMX8MP CPU revC - bd500 (DT)
 Workqueue: usb_hub_wq hub_event
 pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
 pc : __netif_napi_del_locked+0x2b4/0x350
 lr : __netif_napi_del_locked+0x7c/0x350
 sp : ffffffc085b673c0
 x29: ffffffc085b673c0 x28: ffffff800b7f2000 x27: ffffff800b7f20d8
 x26: ffffff80110bcf58 x25: ffffff80110bd978 x24: 1ffffff0022179eb
 x23: ffffff80110bc000 x22: ffffff800b7f5000 x21: ffffff80110bc000
 x20: ffffff80110bcf38 x19: ffffff80110bcf28 x18: dfffffc000000000
 x17: ffffffc081578940 x16: ffffffc08284cee0 x15: 0000000000000028
 x14: 0000000000000006 x13: 0000000000040000 x12: ffffffb0022179e8
 x11: 1ffffff0022179e7 x10: ffffffb0022179e7 x9 : dfffffc000000000
 x8 : 0000004ffdde8619 x7 : ffffff80110bcf3f x6 : 0000000000000001
 x5 : ffffff80110bcf38 x4 : ffffff80110bcf38 x3 : 0000000000000000
 x2 : 0000000000000000 x1 : 1ffffff0022179e7 x0 : 0000000000000000
 Call trace:
  __netif_napi_del_locked+0x2b4/0x350 (P)
  lan78xx_disconnect+0xf4/0x360
  usb_unbind_interface+0x158/0x718
  device_remove+0x100/0x150
  device_release_driver_internal+0x308/0x478
  device_release_driver+0x1c/0x30
  bus_remove_device+0x1a8/0x368
  device_del+0x2e0/0x7b0
  usb_disable_device+0x244/0x540
  usb_disconnect+0x220/0x758
  hub_event+0x105c/0x35e0
  process_one_work+0x760/0x17b0
  worker_thread+0x768/0xce8
  kthread+0x3bc/0x690
  ret_from_fork+0x10/0x20
 irq event stamp: 211604
 hardirqs last  enabled at (211603): [<ffffffc0828cc9ec>] _raw_spin_unlock_irqrestore+0x84/0x98
 hardirqs last disabled at (211604): [<ffffffc0828a9a84>] el1_dbg+0x24/0x80
 softirqs last  enabled at (211296): [<ffffffc080095f10>] handle_softirqs+0x820/0xbc8
 softirqs last disabled at (210993): [<ffffffc080010288>] __do_softirq+0x18/0x20
 ---[ end trace 0000000000000000 ]---
 lan78xx 1-1:1.0 enu1: failed to kill vid 0081/0

Fixes: ec4c7e1 ("lan78xx: Introduce NAPI polling support")
Suggested-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Oleksij Rempel <o.rempel@pengutronix.de>
Link: https://patch.msgid.link/20250627051346.276029-1-o.rempel@pengutronix.de
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
intel-lab-lkp pushed a commit to intel-lab-lkp/linux that referenced this pull request Jul 17, 2025
A crash in conntrack was reported while trying to unlink the conntrack
entry from the hash bucket list:
    [exception RIP: __nf_ct_delete_from_lists+172]
    [..]
 torvalds#7 [ff539b5a2b043aa0] nf_ct_delete at ffffffffc124d421 [nf_conntrack]
 torvalds#8 [ff539b5a2b043ad0] nf_ct_gc_expired at ffffffffc124d999 [nf_conntrack]
 torvalds#9 [ff539b5a2b043ae0] __nf_conntrack_find_get at ffffffffc124efbc [nf_conntrack]
    [..]

The nf_conn struct is marked as allocated from slab but appears to be in
a partially initialised state:

 ct hlist pointer is garbage; looks like the ct hash value
 (hence crash).
 ct->status is equal to IPS_CONFIRMED|IPS_DYING, which is expected
 ct->timeout is 30000 (=30s), which is unexpected.

Everything else looks like normal udp conntrack entry.  If we ignore
ct->status and pretend its 0, the entry matches those that are newly
allocated but not yet inserted into the hash:
  - ct hlist pointers are overloaded and store/cache the raw tuple hash
  - ct->timeout matches the relative time expected for a new udp flow
    rather than the absolute 'jiffies' value.

If it were not for the presence of IPS_CONFIRMED,
__nf_conntrack_find_get() would have skipped the entry.

Theory is that we did hit following race:

cpu x 			cpu y			cpu z
 found entry E		found entry E
 E is expired		<preemption>
 nf_ct_delete()
 return E to rcu slab
					init_conntrack
					E is re-inited,
					ct->status set to 0
					reply tuplehash hnnode.pprev
					stores hash value.

cpu y found E right before it was deleted on cpu x.
E is now re-inited on cpu z.  cpu y was preempted before
checking for expiry and/or confirm bit.

					->refcnt set to 1
					E now owned by skb
					->timeout set to 30000

If cpu y were to resume now, it would observe E as
expired but would skip E due to missing CONFIRMED bit.

					nf_conntrack_confirm gets called
					sets: ct->status |= CONFIRMED
					This is wrong: E is not yet added
					to hashtable.

cpu y resumes, it observes E as expired but CONFIRMED:
			<resumes>
			nf_ct_expired()
			 -> yes (ct->timeout is 30s)
			confirmed bit set.

cpu y will try to delete E from the hashtable:
			nf_ct_delete() -> set DYING bit
			__nf_ct_delete_from_lists

Even this scenario doesn't guarantee a crash:
cpu z still holds the table bucket lock(s) so y blocks:

			wait for spinlock held by z

					CONFIRMED is set but there is no
					guarantee ct will be added to hash:
					"chaintoolong" or "clash resolution"
					logic both skip the insert step.
					reply hnnode.pprev still stores the
					hash value.

					unlocks spinlock
					return NF_DROP
			<unblocks, then
			 crashes on hlist_nulls_del_rcu pprev>

In case CPU z does insert the entry into the hashtable, cpu y will unlink
E again right away but no crash occurs.

Without 'cpu y' race, 'garbage' hlist is of no consequence:
ct refcnt remains at 1, eventually skb will be free'd and E gets
destroyed via: nf_conntrack_put -> nf_conntrack_destroy -> nf_ct_destroy.

To resolve this, move the IPS_CONFIRMED assignment after the table
insertion but before the unlock.

Pablo points out that the confirm-bit-store could be reordered to happen
before hlist add resp. the timeout fixup, so switch to set_bit and
before_atomic memory barrier to prevent this.

It doesn't matter if other CPUs can observe a newly inserted entry right
before the CONFIRMED bit was set:

Such event cannot be distinguished from above "E is the old incarnation"
case: the entry will be skipped.

Also change nf_ct_should_gc() to first check the confirmed bit.

The gc sequence is:
 1. Check if entry has expired, if not skip to next entry
 2. Obtain a reference to the expired entry.
 3. Call nf_ct_should_gc() to double-check step 1.

nf_ct_should_gc() is thus called only for entries that already failed an
expiry check. After this patch, once the confirmed bit check passes
ct->timeout has been altered to reflect the absolute 'best before' date
instead of a relative time.  Step 3 will therefore not remove the entry.

Without this change to nf_ct_should_gc() we could still get this sequence:

 1. Check if entry has expired.
 2. Obtain a reference.
 3. Call nf_ct_should_gc() to double-check step 1:
    4 - entry is still observed as expired
    5 - meanwhile, ct->timeout is corrected to absolute value on other CPU
      and confirm bit gets set
    6 - confirm bit is seen
    7 - valid entry is removed again

First do check 6), then 4) so the gc expiry check always picks up either
confirmed bit unset (entry gets skipped) or expiry re-check failure for
re-inited conntrack objects.

This change cannot be backported to releases before 5.19. Without
commit 8a75a2c ("netfilter: conntrack: remove unconfirmed list")
|= IPS_CONFIRMED line cannot be moved without further changes.

Cc: Razvan Cojocaru <rzvncj@gmail.com>
Link: https://lore.kernel.org/netfilter-devel/20250627142758.25664-1-fw@strlen.de/
Link: https://lore.kernel.org/netfilter-devel/4239da15-83ff-4ca4-939d-faef283471bb@gmail.com/
Fixes: 1397af5 ("netfilter: conntrack: remove the percpu dying list")
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
guidosarducci added a commit to guidosarducci/linux that referenced this pull request Jul 22, 2025
 - treat tailcall count as 32-bit for access and update
 - change out_offset scope from file to function
 - minor format/structure changes for consistency

Testing: (skipping fentry, fexit, freplace)
========

root@qemu-armhf:/usr/libexec/kselftests-bpf# modprobe test_bpf test_suite=test_tail_calls
test_bpf: #0 Tail call leaf jited:1 967 PASS
test_bpf: #1 Tail call 2 jited:1 1427 PASS
test_bpf: #2 Tail call 3 jited:1 2373 PASS
test_bpf: #3 Tail call 4 jited:1 2304 PASS
test_bpf: #4 Tail call load/store leaf jited:1 1684 PASS
test_bpf: #5 Tail call load/store jited:1 2249 PASS
test_bpf: torvalds#6 Tail call error path, max count reached jited:1 22538 PASS
test_bpf: torvalds#7 Tail call count preserved across function calls jited:1 1055668 PASS
test_bpf: torvalds#8 Tail call error path, NULL target jited:1 513 PASS
test_bpf: torvalds#9 Tail call error path, index out of range jited:1 392 PASS
test_bpf: test_tail_calls: Summary: 10 PASSED, 0 FAILED, [10/10 JIT'ed]

root@qemu-armhf:/usr/libexec/kselftests-bpf# ./test_progs -n 397/1-12,17-18,23-24,27-31
397/1   tailcalls/tailcall_1:OK
397/2   tailcalls/tailcall_2:OK
397/3   tailcalls/tailcall_3:OK
397/4   tailcalls/tailcall_4:OK
397/5   tailcalls/tailcall_5:OK
397/6   tailcalls/tailcall_6:OK
397/7   tailcalls/tailcall_bpf2bpf_1:OK
397/8   tailcalls/tailcall_bpf2bpf_2:OK
397/9   tailcalls/tailcall_bpf2bpf_3:OK
397/10  tailcalls/tailcall_bpf2bpf_4:OK
397/11  tailcalls/tailcall_bpf2bpf_5:OK
397/12  tailcalls/tailcall_bpf2bpf_6:OK
397/17  tailcalls/tailcall_poke:OK
397/18  tailcalls/tailcall_bpf2bpf_hierarchy_1:OK
397/23  tailcalls/tailcall_bpf2bpf_hierarchy_2:OK
397/24  tailcalls/tailcall_bpf2bpf_hierarchy_3:OK
397/27  tailcalls/tailcall_failure:OK
397/28  tailcalls/reject_tail_call_spin_lock:OK
397/29  tailcalls/reject_tail_call_rcu_lock:OK
397/30  tailcalls/reject_tail_call_preempt_lock:OK
397/31  tailcalls/reject_tail_call_ref:OK
397     tailcalls:OK
Summary: 1/21 PASSED, 0 SKIPPED, 0 FAILED

Signed-off-by: Tony Ambardar <tony.ambardar@gmail.com>
mj22226 pushed a commit to mj22226/linux that referenced this pull request Jul 23, 2025
[ Upstream commit 2d72afb ]

A crash in conntrack was reported while trying to unlink the conntrack
entry from the hash bucket list:
    [exception RIP: __nf_ct_delete_from_lists+172]
    [..]
 torvalds#7 [ff539b5a2b043aa0] nf_ct_delete at ffffffffc124d421 [nf_conntrack]
 torvalds#8 [ff539b5a2b043ad0] nf_ct_gc_expired at ffffffffc124d999 [nf_conntrack]
 torvalds#9 [ff539b5a2b043ae0] __nf_conntrack_find_get at ffffffffc124efbc [nf_conntrack]
    [..]

The nf_conn struct is marked as allocated from slab but appears to be in
a partially initialised state:

 ct hlist pointer is garbage; looks like the ct hash value
 (hence crash).
 ct->status is equal to IPS_CONFIRMED|IPS_DYING, which is expected
 ct->timeout is 30000 (=30s), which is unexpected.

Everything else looks like normal udp conntrack entry.  If we ignore
ct->status and pretend its 0, the entry matches those that are newly
allocated but not yet inserted into the hash:
  - ct hlist pointers are overloaded and store/cache the raw tuple hash
  - ct->timeout matches the relative time expected for a new udp flow
    rather than the absolute 'jiffies' value.

If it were not for the presence of IPS_CONFIRMED,
__nf_conntrack_find_get() would have skipped the entry.

Theory is that we did hit following race:

cpu x 			cpu y			cpu z
 found entry E		found entry E
 E is expired		<preemption>
 nf_ct_delete()
 return E to rcu slab
					init_conntrack
					E is re-inited,
					ct->status set to 0
					reply tuplehash hnnode.pprev
					stores hash value.

cpu y found E right before it was deleted on cpu x.
E is now re-inited on cpu z.  cpu y was preempted before
checking for expiry and/or confirm bit.

					->refcnt set to 1
					E now owned by skb
					->timeout set to 30000

If cpu y were to resume now, it would observe E as
expired but would skip E due to missing CONFIRMED bit.

					nf_conntrack_confirm gets called
					sets: ct->status |= CONFIRMED
					This is wrong: E is not yet added
					to hashtable.

cpu y resumes, it observes E as expired but CONFIRMED:
			<resumes>
			nf_ct_expired()
			 -> yes (ct->timeout is 30s)
			confirmed bit set.

cpu y will try to delete E from the hashtable:
			nf_ct_delete() -> set DYING bit
			__nf_ct_delete_from_lists

Even this scenario doesn't guarantee a crash:
cpu z still holds the table bucket lock(s) so y blocks:

			wait for spinlock held by z

					CONFIRMED is set but there is no
					guarantee ct will be added to hash:
					"chaintoolong" or "clash resolution"
					logic both skip the insert step.
					reply hnnode.pprev still stores the
					hash value.

					unlocks spinlock
					return NF_DROP
			<unblocks, then
			 crashes on hlist_nulls_del_rcu pprev>

In case CPU z does insert the entry into the hashtable, cpu y will unlink
E again right away but no crash occurs.

Without 'cpu y' race, 'garbage' hlist is of no consequence:
ct refcnt remains at 1, eventually skb will be free'd and E gets
destroyed via: nf_conntrack_put -> nf_conntrack_destroy -> nf_ct_destroy.

To resolve this, move the IPS_CONFIRMED assignment after the table
insertion but before the unlock.

Pablo points out that the confirm-bit-store could be reordered to happen
before hlist add resp. the timeout fixup, so switch to set_bit and
before_atomic memory barrier to prevent this.

It doesn't matter if other CPUs can observe a newly inserted entry right
before the CONFIRMED bit was set:

Such event cannot be distinguished from above "E is the old incarnation"
case: the entry will be skipped.

Also change nf_ct_should_gc() to first check the confirmed bit.

The gc sequence is:
 1. Check if entry has expired, if not skip to next entry
 2. Obtain a reference to the expired entry.
 3. Call nf_ct_should_gc() to double-check step 1.

nf_ct_should_gc() is thus called only for entries that already failed an
expiry check. After this patch, once the confirmed bit check passes
ct->timeout has been altered to reflect the absolute 'best before' date
instead of a relative time.  Step 3 will therefore not remove the entry.

Without this change to nf_ct_should_gc() we could still get this sequence:

 1. Check if entry has expired.
 2. Obtain a reference.
 3. Call nf_ct_should_gc() to double-check step 1:
    4 - entry is still observed as expired
    5 - meanwhile, ct->timeout is corrected to absolute value on other CPU
      and confirm bit gets set
    6 - confirm bit is seen
    7 - valid entry is removed again

First do check 6), then 4) so the gc expiry check always picks up either
confirmed bit unset (entry gets skipped) or expiry re-check failure for
re-inited conntrack objects.

This change cannot be backported to releases before 5.19. Without
commit 8a75a2c ("netfilter: conntrack: remove unconfirmed list")
|= IPS_CONFIRMED line cannot be moved without further changes.

Cc: Razvan Cojocaru <rzvncj@gmail.com>
Link: https://lore.kernel.org/netfilter-devel/20250627142758.25664-1-fw@strlen.de/
Link: https://lore.kernel.org/netfilter-devel/4239da15-83ff-4ca4-939d-faef283471bb@gmail.com/
Fixes: 1397af5 ("netfilter: conntrack: remove the percpu dying list")
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
mj22226 pushed a commit to mj22226/linux that referenced this pull request Jul 23, 2025
[ Upstream commit 2d72afb ]

A crash in conntrack was reported while trying to unlink the conntrack
entry from the hash bucket list:
    [exception RIP: __nf_ct_delete_from_lists+172]
    [..]
 torvalds#7 [ff539b5a2b043aa0] nf_ct_delete at ffffffffc124d421 [nf_conntrack]
 torvalds#8 [ff539b5a2b043ad0] nf_ct_gc_expired at ffffffffc124d999 [nf_conntrack]
 torvalds#9 [ff539b5a2b043ae0] __nf_conntrack_find_get at ffffffffc124efbc [nf_conntrack]
    [..]

The nf_conn struct is marked as allocated from slab but appears to be in
a partially initialised state:

 ct hlist pointer is garbage; looks like the ct hash value
 (hence crash).
 ct->status is equal to IPS_CONFIRMED|IPS_DYING, which is expected
 ct->timeout is 30000 (=30s), which is unexpected.

Everything else looks like normal udp conntrack entry.  If we ignore
ct->status and pretend its 0, the entry matches those that are newly
allocated but not yet inserted into the hash:
  - ct hlist pointers are overloaded and store/cache the raw tuple hash
  - ct->timeout matches the relative time expected for a new udp flow
    rather than the absolute 'jiffies' value.

If it were not for the presence of IPS_CONFIRMED,
__nf_conntrack_find_get() would have skipped the entry.

Theory is that we did hit following race:

cpu x 			cpu y			cpu z
 found entry E		found entry E
 E is expired		<preemption>
 nf_ct_delete()
 return E to rcu slab
					init_conntrack
					E is re-inited,
					ct->status set to 0
					reply tuplehash hnnode.pprev
					stores hash value.

cpu y found E right before it was deleted on cpu x.
E is now re-inited on cpu z.  cpu y was preempted before
checking for expiry and/or confirm bit.

					->refcnt set to 1
					E now owned by skb
					->timeout set to 30000

If cpu y were to resume now, it would observe E as
expired but would skip E due to missing CONFIRMED bit.

					nf_conntrack_confirm gets called
					sets: ct->status |= CONFIRMED
					This is wrong: E is not yet added
					to hashtable.

cpu y resumes, it observes E as expired but CONFIRMED:
			<resumes>
			nf_ct_expired()
			 -> yes (ct->timeout is 30s)
			confirmed bit set.

cpu y will try to delete E from the hashtable:
			nf_ct_delete() -> set DYING bit
			__nf_ct_delete_from_lists

Even this scenario doesn't guarantee a crash:
cpu z still holds the table bucket lock(s) so y blocks:

			wait for spinlock held by z

					CONFIRMED is set but there is no
					guarantee ct will be added to hash:
					"chaintoolong" or "clash resolution"
					logic both skip the insert step.
					reply hnnode.pprev still stores the
					hash value.

					unlocks spinlock
					return NF_DROP
			<unblocks, then
			 crashes on hlist_nulls_del_rcu pprev>

In case CPU z does insert the entry into the hashtable, cpu y will unlink
E again right away but no crash occurs.

Without 'cpu y' race, 'garbage' hlist is of no consequence:
ct refcnt remains at 1, eventually skb will be free'd and E gets
destroyed via: nf_conntrack_put -> nf_conntrack_destroy -> nf_ct_destroy.

To resolve this, move the IPS_CONFIRMED assignment after the table
insertion but before the unlock.

Pablo points out that the confirm-bit-store could be reordered to happen
before hlist add resp. the timeout fixup, so switch to set_bit and
before_atomic memory barrier to prevent this.

It doesn't matter if other CPUs can observe a newly inserted entry right
before the CONFIRMED bit was set:

Such event cannot be distinguished from above "E is the old incarnation"
case: the entry will be skipped.

Also change nf_ct_should_gc() to first check the confirmed bit.

The gc sequence is:
 1. Check if entry has expired, if not skip to next entry
 2. Obtain a reference to the expired entry.
 3. Call nf_ct_should_gc() to double-check step 1.

nf_ct_should_gc() is thus called only for entries that already failed an
expiry check. After this patch, once the confirmed bit check passes
ct->timeout has been altered to reflect the absolute 'best before' date
instead of a relative time.  Step 3 will therefore not remove the entry.

Without this change to nf_ct_should_gc() we could still get this sequence:

 1. Check if entry has expired.
 2. Obtain a reference.
 3. Call nf_ct_should_gc() to double-check step 1:
    4 - entry is still observed as expired
    5 - meanwhile, ct->timeout is corrected to absolute value on other CPU
      and confirm bit gets set
    6 - confirm bit is seen
    7 - valid entry is removed again

First do check 6), then 4) so the gc expiry check always picks up either
confirmed bit unset (entry gets skipped) or expiry re-check failure for
re-inited conntrack objects.

This change cannot be backported to releases before 5.19. Without
commit 8a75a2c ("netfilter: conntrack: remove unconfirmed list")
|= IPS_CONFIRMED line cannot be moved without further changes.

Cc: Razvan Cojocaru <rzvncj@gmail.com>
Link: https://lore.kernel.org/netfilter-devel/20250627142758.25664-1-fw@strlen.de/
Link: https://lore.kernel.org/netfilter-devel/4239da15-83ff-4ca4-939d-faef283471bb@gmail.com/
Fixes: 1397af5 ("netfilter: conntrack: remove the percpu dying list")
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
mj22226 pushed a commit to mj22226/linux that referenced this pull request Jul 23, 2025
[ Upstream commit 2d72afb ]

A crash in conntrack was reported while trying to unlink the conntrack
entry from the hash bucket list:
    [exception RIP: __nf_ct_delete_from_lists+172]
    [..]
 torvalds#7 [ff539b5a2b043aa0] nf_ct_delete at ffffffffc124d421 [nf_conntrack]
 torvalds#8 [ff539b5a2b043ad0] nf_ct_gc_expired at ffffffffc124d999 [nf_conntrack]
 torvalds#9 [ff539b5a2b043ae0] __nf_conntrack_find_get at ffffffffc124efbc [nf_conntrack]
    [..]

The nf_conn struct is marked as allocated from slab but appears to be in
a partially initialised state:

 ct hlist pointer is garbage; looks like the ct hash value
 (hence crash).
 ct->status is equal to IPS_CONFIRMED|IPS_DYING, which is expected
 ct->timeout is 30000 (=30s), which is unexpected.

Everything else looks like normal udp conntrack entry.  If we ignore
ct->status and pretend its 0, the entry matches those that are newly
allocated but not yet inserted into the hash:
  - ct hlist pointers are overloaded and store/cache the raw tuple hash
  - ct->timeout matches the relative time expected for a new udp flow
    rather than the absolute 'jiffies' value.

If it were not for the presence of IPS_CONFIRMED,
__nf_conntrack_find_get() would have skipped the entry.

Theory is that we did hit following race:

cpu x 			cpu y			cpu z
 found entry E		found entry E
 E is expired		<preemption>
 nf_ct_delete()
 return E to rcu slab
					init_conntrack
					E is re-inited,
					ct->status set to 0
					reply tuplehash hnnode.pprev
					stores hash value.

cpu y found E right before it was deleted on cpu x.
E is now re-inited on cpu z.  cpu y was preempted before
checking for expiry and/or confirm bit.

					->refcnt set to 1
					E now owned by skb
					->timeout set to 30000

If cpu y were to resume now, it would observe E as
expired but would skip E due to missing CONFIRMED bit.

					nf_conntrack_confirm gets called
					sets: ct->status |= CONFIRMED
					This is wrong: E is not yet added
					to hashtable.

cpu y resumes, it observes E as expired but CONFIRMED:
			<resumes>
			nf_ct_expired()
			 -> yes (ct->timeout is 30s)
			confirmed bit set.

cpu y will try to delete E from the hashtable:
			nf_ct_delete() -> set DYING bit
			__nf_ct_delete_from_lists

Even this scenario doesn't guarantee a crash:
cpu z still holds the table bucket lock(s) so y blocks:

			wait for spinlock held by z

					CONFIRMED is set but there is no
					guarantee ct will be added to hash:
					"chaintoolong" or "clash resolution"
					logic both skip the insert step.
					reply hnnode.pprev still stores the
					hash value.

					unlocks spinlock
					return NF_DROP
			<unblocks, then
			 crashes on hlist_nulls_del_rcu pprev>

In case CPU z does insert the entry into the hashtable, cpu y will unlink
E again right away but no crash occurs.

Without 'cpu y' race, 'garbage' hlist is of no consequence:
ct refcnt remains at 1, eventually skb will be free'd and E gets
destroyed via: nf_conntrack_put -> nf_conntrack_destroy -> nf_ct_destroy.

To resolve this, move the IPS_CONFIRMED assignment after the table
insertion but before the unlock.

Pablo points out that the confirm-bit-store could be reordered to happen
before hlist add resp. the timeout fixup, so switch to set_bit and
before_atomic memory barrier to prevent this.

It doesn't matter if other CPUs can observe a newly inserted entry right
before the CONFIRMED bit was set:

Such event cannot be distinguished from above "E is the old incarnation"
case: the entry will be skipped.

Also change nf_ct_should_gc() to first check the confirmed bit.

The gc sequence is:
 1. Check if entry has expired, if not skip to next entry
 2. Obtain a reference to the expired entry.
 3. Call nf_ct_should_gc() to double-check step 1.

nf_ct_should_gc() is thus called only for entries that already failed an
expiry check. After this patch, once the confirmed bit check passes
ct->timeout has been altered to reflect the absolute 'best before' date
instead of a relative time.  Step 3 will therefore not remove the entry.

Without this change to nf_ct_should_gc() we could still get this sequence:

 1. Check if entry has expired.
 2. Obtain a reference.
 3. Call nf_ct_should_gc() to double-check step 1:
    4 - entry is still observed as expired
    5 - meanwhile, ct->timeout is corrected to absolute value on other CPU
      and confirm bit gets set
    6 - confirm bit is seen
    7 - valid entry is removed again

First do check 6), then 4) so the gc expiry check always picks up either
confirmed bit unset (entry gets skipped) or expiry re-check failure for
re-inited conntrack objects.

This change cannot be backported to releases before 5.19. Without
commit 8a75a2c ("netfilter: conntrack: remove unconfirmed list")
|= IPS_CONFIRMED line cannot be moved without further changes.

Cc: Razvan Cojocaru <rzvncj@gmail.com>
Link: https://lore.kernel.org/netfilter-devel/20250627142758.25664-1-fw@strlen.de/
Link: https://lore.kernel.org/netfilter-devel/4239da15-83ff-4ca4-939d-faef283471bb@gmail.com/
Fixes: 1397af5 ("netfilter: conntrack: remove the percpu dying list")
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
1054009064 pushed a commit to 1054009064/linux that referenced this pull request Jul 24, 2025
[ Upstream commit 2d72afb ]

A crash in conntrack was reported while trying to unlink the conntrack
entry from the hash bucket list:
    [exception RIP: __nf_ct_delete_from_lists+172]
    [..]
 torvalds#7 [ff539b5a2b043aa0] nf_ct_delete at ffffffffc124d421 [nf_conntrack]
 torvalds#8 [ff539b5a2b043ad0] nf_ct_gc_expired at ffffffffc124d999 [nf_conntrack]
 torvalds#9 [ff539b5a2b043ae0] __nf_conntrack_find_get at ffffffffc124efbc [nf_conntrack]
    [..]

The nf_conn struct is marked as allocated from slab but appears to be in
a partially initialised state:

 ct hlist pointer is garbage; looks like the ct hash value
 (hence crash).
 ct->status is equal to IPS_CONFIRMED|IPS_DYING, which is expected
 ct->timeout is 30000 (=30s), which is unexpected.

Everything else looks like normal udp conntrack entry.  If we ignore
ct->status and pretend its 0, the entry matches those that are newly
allocated but not yet inserted into the hash:
  - ct hlist pointers are overloaded and store/cache the raw tuple hash
  - ct->timeout matches the relative time expected for a new udp flow
    rather than the absolute 'jiffies' value.

If it were not for the presence of IPS_CONFIRMED,
__nf_conntrack_find_get() would have skipped the entry.

Theory is that we did hit following race:

cpu x 			cpu y			cpu z
 found entry E		found entry E
 E is expired		<preemption>
 nf_ct_delete()
 return E to rcu slab
					init_conntrack
					E is re-inited,
					ct->status set to 0
					reply tuplehash hnnode.pprev
					stores hash value.

cpu y found E right before it was deleted on cpu x.
E is now re-inited on cpu z.  cpu y was preempted before
checking for expiry and/or confirm bit.

					->refcnt set to 1
					E now owned by skb
					->timeout set to 30000

If cpu y were to resume now, it would observe E as
expired but would skip E due to missing CONFIRMED bit.

					nf_conntrack_confirm gets called
					sets: ct->status |= CONFIRMED
					This is wrong: E is not yet added
					to hashtable.

cpu y resumes, it observes E as expired but CONFIRMED:
			<resumes>
			nf_ct_expired()
			 -> yes (ct->timeout is 30s)
			confirmed bit set.

cpu y will try to delete E from the hashtable:
			nf_ct_delete() -> set DYING bit
			__nf_ct_delete_from_lists

Even this scenario doesn't guarantee a crash:
cpu z still holds the table bucket lock(s) so y blocks:

			wait for spinlock held by z

					CONFIRMED is set but there is no
					guarantee ct will be added to hash:
					"chaintoolong" or "clash resolution"
					logic both skip the insert step.
					reply hnnode.pprev still stores the
					hash value.

					unlocks spinlock
					return NF_DROP
			<unblocks, then
			 crashes on hlist_nulls_del_rcu pprev>

In case CPU z does insert the entry into the hashtable, cpu y will unlink
E again right away but no crash occurs.

Without 'cpu y' race, 'garbage' hlist is of no consequence:
ct refcnt remains at 1, eventually skb will be free'd and E gets
destroyed via: nf_conntrack_put -> nf_conntrack_destroy -> nf_ct_destroy.

To resolve this, move the IPS_CONFIRMED assignment after the table
insertion but before the unlock.

Pablo points out that the confirm-bit-store could be reordered to happen
before hlist add resp. the timeout fixup, so switch to set_bit and
before_atomic memory barrier to prevent this.

It doesn't matter if other CPUs can observe a newly inserted entry right
before the CONFIRMED bit was set:

Such event cannot be distinguished from above "E is the old incarnation"
case: the entry will be skipped.

Also change nf_ct_should_gc() to first check the confirmed bit.

The gc sequence is:
 1. Check if entry has expired, if not skip to next entry
 2. Obtain a reference to the expired entry.
 3. Call nf_ct_should_gc() to double-check step 1.

nf_ct_should_gc() is thus called only for entries that already failed an
expiry check. After this patch, once the confirmed bit check passes
ct->timeout has been altered to reflect the absolute 'best before' date
instead of a relative time.  Step 3 will therefore not remove the entry.

Without this change to nf_ct_should_gc() we could still get this sequence:

 1. Check if entry has expired.
 2. Obtain a reference.
 3. Call nf_ct_should_gc() to double-check step 1:
    4 - entry is still observed as expired
    5 - meanwhile, ct->timeout is corrected to absolute value on other CPU
      and confirm bit gets set
    6 - confirm bit is seen
    7 - valid entry is removed again

First do check 6), then 4) so the gc expiry check always picks up either
confirmed bit unset (entry gets skipped) or expiry re-check failure for
re-inited conntrack objects.

This change cannot be backported to releases before 5.19. Without
commit 8a75a2c ("netfilter: conntrack: remove unconfirmed list")
|= IPS_CONFIRMED line cannot be moved without further changes.

Cc: Razvan Cojocaru <rzvncj@gmail.com>
Link: https://lore.kernel.org/netfilter-devel/20250627142758.25664-1-fw@strlen.de/
Link: https://lore.kernel.org/netfilter-devel/4239da15-83ff-4ca4-939d-faef283471bb@gmail.com/
Fixes: 1397af5 ("netfilter: conntrack: remove the percpu dying list")
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
1054009064 pushed a commit to 1054009064/linux that referenced this pull request Jul 24, 2025
[ Upstream commit 2d72afb ]

A crash in conntrack was reported while trying to unlink the conntrack
entry from the hash bucket list:
    [exception RIP: __nf_ct_delete_from_lists+172]
    [..]
 torvalds#7 [ff539b5a2b043aa0] nf_ct_delete at ffffffffc124d421 [nf_conntrack]
 torvalds#8 [ff539b5a2b043ad0] nf_ct_gc_expired at ffffffffc124d999 [nf_conntrack]
 torvalds#9 [ff539b5a2b043ae0] __nf_conntrack_find_get at ffffffffc124efbc [nf_conntrack]
    [..]

The nf_conn struct is marked as allocated from slab but appears to be in
a partially initialised state:

 ct hlist pointer is garbage; looks like the ct hash value
 (hence crash).
 ct->status is equal to IPS_CONFIRMED|IPS_DYING, which is expected
 ct->timeout is 30000 (=30s), which is unexpected.

Everything else looks like normal udp conntrack entry.  If we ignore
ct->status and pretend its 0, the entry matches those that are newly
allocated but not yet inserted into the hash:
  - ct hlist pointers are overloaded and store/cache the raw tuple hash
  - ct->timeout matches the relative time expected for a new udp flow
    rather than the absolute 'jiffies' value.

If it were not for the presence of IPS_CONFIRMED,
__nf_conntrack_find_get() would have skipped the entry.

Theory is that we did hit following race:

cpu x 			cpu y			cpu z
 found entry E		found entry E
 E is expired		<preemption>
 nf_ct_delete()
 return E to rcu slab
					init_conntrack
					E is re-inited,
					ct->status set to 0
					reply tuplehash hnnode.pprev
					stores hash value.

cpu y found E right before it was deleted on cpu x.
E is now re-inited on cpu z.  cpu y was preempted before
checking for expiry and/or confirm bit.

					->refcnt set to 1
					E now owned by skb
					->timeout set to 30000

If cpu y were to resume now, it would observe E as
expired but would skip E due to missing CONFIRMED bit.

					nf_conntrack_confirm gets called
					sets: ct->status |= CONFIRMED
					This is wrong: E is not yet added
					to hashtable.

cpu y resumes, it observes E as expired but CONFIRMED:
			<resumes>
			nf_ct_expired()
			 -> yes (ct->timeout is 30s)
			confirmed bit set.

cpu y will try to delete E from the hashtable:
			nf_ct_delete() -> set DYING bit
			__nf_ct_delete_from_lists

Even this scenario doesn't guarantee a crash:
cpu z still holds the table bucket lock(s) so y blocks:

			wait for spinlock held by z

					CONFIRMED is set but there is no
					guarantee ct will be added to hash:
					"chaintoolong" or "clash resolution"
					logic both skip the insert step.
					reply hnnode.pprev still stores the
					hash value.

					unlocks spinlock
					return NF_DROP
			<unblocks, then
			 crashes on hlist_nulls_del_rcu pprev>

In case CPU z does insert the entry into the hashtable, cpu y will unlink
E again right away but no crash occurs.

Without 'cpu y' race, 'garbage' hlist is of no consequence:
ct refcnt remains at 1, eventually skb will be free'd and E gets
destroyed via: nf_conntrack_put -> nf_conntrack_destroy -> nf_ct_destroy.

To resolve this, move the IPS_CONFIRMED assignment after the table
insertion but before the unlock.

Pablo points out that the confirm-bit-store could be reordered to happen
before hlist add resp. the timeout fixup, so switch to set_bit and
before_atomic memory barrier to prevent this.

It doesn't matter if other CPUs can observe a newly inserted entry right
before the CONFIRMED bit was set:

Such event cannot be distinguished from above "E is the old incarnation"
case: the entry will be skipped.

Also change nf_ct_should_gc() to first check the confirmed bit.

The gc sequence is:
 1. Check if entry has expired, if not skip to next entry
 2. Obtain a reference to the expired entry.
 3. Call nf_ct_should_gc() to double-check step 1.

nf_ct_should_gc() is thus called only for entries that already failed an
expiry check. After this patch, once the confirmed bit check passes
ct->timeout has been altered to reflect the absolute 'best before' date
instead of a relative time.  Step 3 will therefore not remove the entry.

Without this change to nf_ct_should_gc() we could still get this sequence:

 1. Check if entry has expired.
 2. Obtain a reference.
 3. Call nf_ct_should_gc() to double-check step 1:
    4 - entry is still observed as expired
    5 - meanwhile, ct->timeout is corrected to absolute value on other CPU
      and confirm bit gets set
    6 - confirm bit is seen
    7 - valid entry is removed again

First do check 6), then 4) so the gc expiry check always picks up either
confirmed bit unset (entry gets skipped) or expiry re-check failure for
re-inited conntrack objects.

This change cannot be backported to releases before 5.19. Without
commit 8a75a2c ("netfilter: conntrack: remove unconfirmed list")
|= IPS_CONFIRMED line cannot be moved without further changes.

Cc: Razvan Cojocaru <rzvncj@gmail.com>
Link: https://lore.kernel.org/netfilter-devel/20250627142758.25664-1-fw@strlen.de/
Link: https://lore.kernel.org/netfilter-devel/4239da15-83ff-4ca4-939d-faef283471bb@gmail.com/
Fixes: 1397af5 ("netfilter: conntrack: remove the percpu dying list")
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
1054009064 pushed a commit to 1054009064/linux that referenced this pull request Jul 24, 2025
[ Upstream commit 2d72afb ]

A crash in conntrack was reported while trying to unlink the conntrack
entry from the hash bucket list:
    [exception RIP: __nf_ct_delete_from_lists+172]
    [..]
 torvalds#7 [ff539b5a2b043aa0] nf_ct_delete at ffffffffc124d421 [nf_conntrack]
 torvalds#8 [ff539b5a2b043ad0] nf_ct_gc_expired at ffffffffc124d999 [nf_conntrack]
 torvalds#9 [ff539b5a2b043ae0] __nf_conntrack_find_get at ffffffffc124efbc [nf_conntrack]
    [..]

The nf_conn struct is marked as allocated from slab but appears to be in
a partially initialised state:

 ct hlist pointer is garbage; looks like the ct hash value
 (hence crash).
 ct->status is equal to IPS_CONFIRMED|IPS_DYING, which is expected
 ct->timeout is 30000 (=30s), which is unexpected.

Everything else looks like normal udp conntrack entry.  If we ignore
ct->status and pretend its 0, the entry matches those that are newly
allocated but not yet inserted into the hash:
  - ct hlist pointers are overloaded and store/cache the raw tuple hash
  - ct->timeout matches the relative time expected for a new udp flow
    rather than the absolute 'jiffies' value.

If it were not for the presence of IPS_CONFIRMED,
__nf_conntrack_find_get() would have skipped the entry.

Theory is that we did hit following race:

cpu x 			cpu y			cpu z
 found entry E		found entry E
 E is expired		<preemption>
 nf_ct_delete()
 return E to rcu slab
					init_conntrack
					E is re-inited,
					ct->status set to 0
					reply tuplehash hnnode.pprev
					stores hash value.

cpu y found E right before it was deleted on cpu x.
E is now re-inited on cpu z.  cpu y was preempted before
checking for expiry and/or confirm bit.

					->refcnt set to 1
					E now owned by skb
					->timeout set to 30000

If cpu y were to resume now, it would observe E as
expired but would skip E due to missing CONFIRMED bit.

					nf_conntrack_confirm gets called
					sets: ct->status |= CONFIRMED
					This is wrong: E is not yet added
					to hashtable.

cpu y resumes, it observes E as expired but CONFIRMED:
			<resumes>
			nf_ct_expired()
			 -> yes (ct->timeout is 30s)
			confirmed bit set.

cpu y will try to delete E from the hashtable:
			nf_ct_delete() -> set DYING bit
			__nf_ct_delete_from_lists

Even this scenario doesn't guarantee a crash:
cpu z still holds the table bucket lock(s) so y blocks:

			wait for spinlock held by z

					CONFIRMED is set but there is no
					guarantee ct will be added to hash:
					"chaintoolong" or "clash resolution"
					logic both skip the insert step.
					reply hnnode.pprev still stores the
					hash value.

					unlocks spinlock
					return NF_DROP
			<unblocks, then
			 crashes on hlist_nulls_del_rcu pprev>

In case CPU z does insert the entry into the hashtable, cpu y will unlink
E again right away but no crash occurs.

Without 'cpu y' race, 'garbage' hlist is of no consequence:
ct refcnt remains at 1, eventually skb will be free'd and E gets
destroyed via: nf_conntrack_put -> nf_conntrack_destroy -> nf_ct_destroy.

To resolve this, move the IPS_CONFIRMED assignment after the table
insertion but before the unlock.

Pablo points out that the confirm-bit-store could be reordered to happen
before hlist add resp. the timeout fixup, so switch to set_bit and
before_atomic memory barrier to prevent this.

It doesn't matter if other CPUs can observe a newly inserted entry right
before the CONFIRMED bit was set:

Such event cannot be distinguished from above "E is the old incarnation"
case: the entry will be skipped.

Also change nf_ct_should_gc() to first check the confirmed bit.

The gc sequence is:
 1. Check if entry has expired, if not skip to next entry
 2. Obtain a reference to the expired entry.
 3. Call nf_ct_should_gc() to double-check step 1.

nf_ct_should_gc() is thus called only for entries that already failed an
expiry check. After this patch, once the confirmed bit check passes
ct->timeout has been altered to reflect the absolute 'best before' date
instead of a relative time.  Step 3 will therefore not remove the entry.

Without this change to nf_ct_should_gc() we could still get this sequence:

 1. Check if entry has expired.
 2. Obtain a reference.
 3. Call nf_ct_should_gc() to double-check step 1:
    4 - entry is still observed as expired
    5 - meanwhile, ct->timeout is corrected to absolute value on other CPU
      and confirm bit gets set
    6 - confirm bit is seen
    7 - valid entry is removed again

First do check 6), then 4) so the gc expiry check always picks up either
confirmed bit unset (entry gets skipped) or expiry re-check failure for
re-inited conntrack objects.

This change cannot be backported to releases before 5.19. Without
commit 8a75a2c ("netfilter: conntrack: remove unconfirmed list")
|= IPS_CONFIRMED line cannot be moved without further changes.

Cc: Razvan Cojocaru <rzvncj@gmail.com>
Link: https://lore.kernel.org/netfilter-devel/20250627142758.25664-1-fw@strlen.de/
Link: https://lore.kernel.org/netfilter-devel/4239da15-83ff-4ca4-939d-faef283471bb@gmail.com/
Fixes: 1397af5 ("netfilter: conntrack: remove the percpu dying list")
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
1054009064 pushed a commit to 1054009064/linux that referenced this pull request Jul 24, 2025
[ Upstream commit 2d72afb ]

A crash in conntrack was reported while trying to unlink the conntrack
entry from the hash bucket list:
    [exception RIP: __nf_ct_delete_from_lists+172]
    [..]
 torvalds#7 [ff539b5a2b043aa0] nf_ct_delete at ffffffffc124d421 [nf_conntrack]
 torvalds#8 [ff539b5a2b043ad0] nf_ct_gc_expired at ffffffffc124d999 [nf_conntrack]
 torvalds#9 [ff539b5a2b043ae0] __nf_conntrack_find_get at ffffffffc124efbc [nf_conntrack]
    [..]

The nf_conn struct is marked as allocated from slab but appears to be in
a partially initialised state:

 ct hlist pointer is garbage; looks like the ct hash value
 (hence crash).
 ct->status is equal to IPS_CONFIRMED|IPS_DYING, which is expected
 ct->timeout is 30000 (=30s), which is unexpected.

Everything else looks like normal udp conntrack entry.  If we ignore
ct->status and pretend its 0, the entry matches those that are newly
allocated but not yet inserted into the hash:
  - ct hlist pointers are overloaded and store/cache the raw tuple hash
  - ct->timeout matches the relative time expected for a new udp flow
    rather than the absolute 'jiffies' value.

If it were not for the presence of IPS_CONFIRMED,
__nf_conntrack_find_get() would have skipped the entry.

Theory is that we did hit following race:

cpu x 			cpu y			cpu z
 found entry E		found entry E
 E is expired		<preemption>
 nf_ct_delete()
 return E to rcu slab
					init_conntrack
					E is re-inited,
					ct->status set to 0
					reply tuplehash hnnode.pprev
					stores hash value.

cpu y found E right before it was deleted on cpu x.
E is now re-inited on cpu z.  cpu y was preempted before
checking for expiry and/or confirm bit.

					->refcnt set to 1
					E now owned by skb
					->timeout set to 30000

If cpu y were to resume now, it would observe E as
expired but would skip E due to missing CONFIRMED bit.

					nf_conntrack_confirm gets called
					sets: ct->status |= CONFIRMED
					This is wrong: E is not yet added
					to hashtable.

cpu y resumes, it observes E as expired but CONFIRMED:
			<resumes>
			nf_ct_expired()
			 -> yes (ct->timeout is 30s)
			confirmed bit set.

cpu y will try to delete E from the hashtable:
			nf_ct_delete() -> set DYING bit
			__nf_ct_delete_from_lists

Even this scenario doesn't guarantee a crash:
cpu z still holds the table bucket lock(s) so y blocks:

			wait for spinlock held by z

					CONFIRMED is set but there is no
					guarantee ct will be added to hash:
					"chaintoolong" or "clash resolution"
					logic both skip the insert step.
					reply hnnode.pprev still stores the
					hash value.

					unlocks spinlock
					return NF_DROP
			<unblocks, then
			 crashes on hlist_nulls_del_rcu pprev>

In case CPU z does insert the entry into the hashtable, cpu y will unlink
E again right away but no crash occurs.

Without 'cpu y' race, 'garbage' hlist is of no consequence:
ct refcnt remains at 1, eventually skb will be free'd and E gets
destroyed via: nf_conntrack_put -> nf_conntrack_destroy -> nf_ct_destroy.

To resolve this, move the IPS_CONFIRMED assignment after the table
insertion but before the unlock.

Pablo points out that the confirm-bit-store could be reordered to happen
before hlist add resp. the timeout fixup, so switch to set_bit and
before_atomic memory barrier to prevent this.

It doesn't matter if other CPUs can observe a newly inserted entry right
before the CONFIRMED bit was set:

Such event cannot be distinguished from above "E is the old incarnation"
case: the entry will be skipped.

Also change nf_ct_should_gc() to first check the confirmed bit.

The gc sequence is:
 1. Check if entry has expired, if not skip to next entry
 2. Obtain a reference to the expired entry.
 3. Call nf_ct_should_gc() to double-check step 1.

nf_ct_should_gc() is thus called only for entries that already failed an
expiry check. After this patch, once the confirmed bit check passes
ct->timeout has been altered to reflect the absolute 'best before' date
instead of a relative time.  Step 3 will therefore not remove the entry.

Without this change to nf_ct_should_gc() we could still get this sequence:

 1. Check if entry has expired.
 2. Obtain a reference.
 3. Call nf_ct_should_gc() to double-check step 1:
    4 - entry is still observed as expired
    5 - meanwhile, ct->timeout is corrected to absolute value on other CPU
      and confirm bit gets set
    6 - confirm bit is seen
    7 - valid entry is removed again

First do check 6), then 4) so the gc expiry check always picks up either
confirmed bit unset (entry gets skipped) or expiry re-check failure for
re-inited conntrack objects.

This change cannot be backported to releases before 5.19. Without
commit 8a75a2c ("netfilter: conntrack: remove unconfirmed list")
|= IPS_CONFIRMED line cannot be moved without further changes.

Cc: Razvan Cojocaru <rzvncj@gmail.com>
Link: https://lore.kernel.org/netfilter-devel/20250627142758.25664-1-fw@strlen.de/
Link: https://lore.kernel.org/netfilter-devel/4239da15-83ff-4ca4-939d-faef283471bb@gmail.com/
Fixes: 1397af5 ("netfilter: conntrack: remove the percpu dying list")
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
intel-lab-lkp pushed a commit to intel-lab-lkp/linux that referenced this pull request Jul 24, 2025
When testing F2FS with xfstests using UFS backed virtual disks the
kernel complains sometimes that f2fs_release_decomp_mem() calls
vm_unmap_ram() from an invalid context. Example trace from
f2fs/007 test:

f2fs/007 5s ...  [12:59:38][    8.902525] run fstests f2fs/007
[   11.468026] BUG: sleeping function called from invalid context at mm/vmalloc.c:2978
[   11.471849] in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 68, name: irq/22-ufshcd
[   11.475357] preempt_count: 1, expected: 0
[   11.476970] RCU nest depth: 0, expected: 0
[   11.478531] CPU: 0 UID: 0 PID: 68 Comm: irq/22-ufshcd Tainted: G        W           6.16.0-rc5-xfstests-ufs-g40f92e79b0aa torvalds#9 PREEMPT(none)
[   11.478535] Tainted: [W]=WARN
[   11.478536] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[   11.478537] Call Trace:
[   11.478543]  <TASK>
[   11.478545]  dump_stack_lvl+0x4e/0x70
[   11.478554]  __might_resched.cold+0xaf/0xbe
[   11.478557]  vm_unmap_ram+0x21/0xb0
[   11.478560]  f2fs_release_decomp_mem+0x59/0x80
[   11.478563]  f2fs_free_dic+0x18/0x1a0
[   11.478565]  f2fs_finish_read_bio+0xd7/0x290
[   11.478570]  blk_update_request+0xec/0x3b0
[   11.478574]  ? sbitmap_queue_clear+0x3b/0x60
[   11.478576]  scsi_end_request+0x27/0x1a0
[   11.478582]  scsi_io_completion+0x40/0x300
[   11.478583]  ufshcd_mcq_poll_cqe_lock+0xa3/0xe0
[   11.478588]  ufshcd_sl_intr+0x194/0x1f0
[   11.478592]  ufshcd_threaded_intr+0x68/0xb0
[   11.478594]  ? __pfx_irq_thread_fn+0x10/0x10
[   11.478599]  irq_thread_fn+0x20/0x60
[   11.478602]  ? __pfx_irq_thread_fn+0x10/0x10
[   11.478603]  irq_thread+0xb9/0x180
[   11.478605]  ? __pfx_irq_thread_dtor+0x10/0x10
[   11.478607]  ? __pfx_irq_thread+0x10/0x10
[   11.478609]  kthread+0x10a/0x230
[   11.478614]  ? __pfx_kthread+0x10/0x10
[   11.478615]  ret_from_fork+0x7e/0xd0
[   11.478619]  ? __pfx_kthread+0x10/0x10
[   11.478621]  ret_from_fork_asm+0x1a/0x30
[   11.478623]  </TASK>

This patch modifies in_task() check inside f2fs_read_end_io() to also
check if interrupts are disabled. This ensures that pages are unmapped
asynchronously in an interrupt handler.

Fixes: bff139b ("f2fs: handle decompress only post processing in softirq")

Signed-off-by: Jan Prusakowski <jprusakowski@google.com>

Reviewed-by: Chao Yu <chao@kernel.org>
kvmahesh9 pushed a commit to fortanix/linux that referenced this pull request Jul 25, 2025
BugLink: https://bugs.launchpad.net/bugs/2111953

[ Upstream commit c7b87ce ]

libtraceevent parses and returns an array of argument fields, sometimes
larger than RAW_SYSCALL_ARGS_NUM (6) because it includes "__syscall_nr",
idx will traverse to index 6 (7th element) whereas sc->fmt->arg holds 6
elements max, creating an out-of-bounds access. This runtime error is
found by UBsan. The error message:

  $ sudo UBSAN_OPTIONS=print_stacktrace=1 ./perf trace -a --max-events=1
  builtin-trace.c:1966:35: runtime error: index 6 out of bounds for type 'syscall_arg_fmt [6]'
    #0 0x5c04956be5fe in syscall__alloc_arg_fmts /home/howard/hw/linux-perf/tools/perf/builtin-trace.c:1966
    #1 0x5c04956c0510 in trace__read_syscall_info /home/howard/hw/linux-perf/tools/perf/builtin-trace.c:2110
    #2 0x5c04956c372b in trace__syscall_info /home/howard/hw/linux-perf/tools/perf/builtin-trace.c:2436
    #3 0x5c04956d2f39 in trace__init_syscalls_bpf_prog_array_maps /home/howard/hw/linux-perf/tools/perf/builtin-trace.c:3897
    #4 0x5c04956d6d25 in trace__run /home/howard/hw/linux-perf/tools/perf/builtin-trace.c:4335
    #5 0x5c04956e112e in cmd_trace /home/howard/hw/linux-perf/tools/perf/builtin-trace.c:5502
    torvalds#6 0x5c04956eda7d in run_builtin /home/howard/hw/linux-perf/tools/perf/perf.c:351
    torvalds#7 0x5c04956ee0a8 in handle_internal_command /home/howard/hw/linux-perf/tools/perf/perf.c:404
    torvalds#8 0x5c04956ee37f in run_argv /home/howard/hw/linux-perf/tools/perf/perf.c:448
    torvalds#9 0x5c04956ee8e9 in main /home/howard/hw/linux-perf/tools/perf/perf.c:556
    torvalds#10 0x79eb3622a3b7 in __libc_start_call_main ../sysdeps/nptl/libc_start_call_main.h:58
    torvalds#11 0x79eb3622a47a in __libc_start_main_impl ../csu/libc-start.c:360
    torvalds#12 0x5c04955422d4 in _start (/home/howard/hw/linux-perf/tools/perf/perf+0x4e02d4) (BuildId: 5b6cab2d59e96a4341741765ad6914a4d784dbc6)

     0.000 ( 0.014 ms): Chrome_ChildIO/117244 write(fd: 238, buf: !, count: 1)                                      = 1

Fixes: 5e58fcf ("perf trace: Allow allocating sc->arg_fmt even without the syscall tracepoint")
Signed-off-by: Howard Chu <howardchu95@gmail.com>
Link: https://lore.kernel.org/r/20250122025519.361873-1-howardchu95@gmail.com
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Manuel Diewald <manuel.diewald@canonical.com>
Signed-off-by: Mehmet Basaran <mehmet.basaran@canonical.com>
roxell pushed a commit to roxell/linux that referenced this pull request Jul 25, 2025
When testing F2FS with xfstests using UFS backed virtual disks the
kernel complains sometimes that f2fs_release_decomp_mem() calls
vm_unmap_ram() from an invalid context. Example trace from
f2fs/007 test:

f2fs/007 5s ...  [12:59:38][    8.902525] run fstests f2fs/007
[   11.468026] BUG: sleeping function called from invalid context at mm/vmalloc.c:2978
[   11.471849] in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 68, name: irq/22-ufshcd
[   11.475357] preempt_count: 1, expected: 0
[   11.476970] RCU nest depth: 0, expected: 0
[   11.478531] CPU: 0 UID: 0 PID: 68 Comm: irq/22-ufshcd Tainted: G        W           6.16.0-rc5-xfstests-ufs-g40f92e79b0aa torvalds#9 PREEMPT(none)
[   11.478535] Tainted: [W]=WARN
[   11.478536] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[   11.478537] Call Trace:
[   11.478543]  <TASK>
[   11.478545]  dump_stack_lvl+0x4e/0x70
[   11.478554]  __might_resched.cold+0xaf/0xbe
[   11.478557]  vm_unmap_ram+0x21/0xb0
[   11.478560]  f2fs_release_decomp_mem+0x59/0x80
[   11.478563]  f2fs_free_dic+0x18/0x1a0
[   11.478565]  f2fs_finish_read_bio+0xd7/0x290
[   11.478570]  blk_update_request+0xec/0x3b0
[   11.478574]  ? sbitmap_queue_clear+0x3b/0x60
[   11.478576]  scsi_end_request+0x27/0x1a0
[   11.478582]  scsi_io_completion+0x40/0x300
[   11.478583]  ufshcd_mcq_poll_cqe_lock+0xa3/0xe0
[   11.478588]  ufshcd_sl_intr+0x194/0x1f0
[   11.478592]  ufshcd_threaded_intr+0x68/0xb0
[   11.478594]  ? __pfx_irq_thread_fn+0x10/0x10
[   11.478599]  irq_thread_fn+0x20/0x60
[   11.478602]  ? __pfx_irq_thread_fn+0x10/0x10
[   11.478603]  irq_thread+0xb9/0x180
[   11.478605]  ? __pfx_irq_thread_dtor+0x10/0x10
[   11.478607]  ? __pfx_irq_thread+0x10/0x10
[   11.478609]  kthread+0x10a/0x230
[   11.478614]  ? __pfx_kthread+0x10/0x10
[   11.478615]  ret_from_fork+0x7e/0xd0
[   11.478619]  ? __pfx_kthread+0x10/0x10
[   11.478621]  ret_from_fork_asm+0x1a/0x30
[   11.478623]  </TASK>

This patch modifies in_task() check inside f2fs_read_end_io() to also
check if interrupts are disabled. This ensures that pages are unmapped
asynchronously in an interrupt handler.

Fixes: bff139b ("f2fs: handle decompress only post processing in softirq")
Signed-off-by: Jan Prusakowski <jprusakowski@google.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
guidosarducci added a commit to guidosarducci/linux that referenced this pull request Jul 26, 2025
 - treat tailcall count as 32-bit for access and update
 - change out_offset scope from file to function
 - minor format/structure changes for consistency

Testing: (skipping fentry, fexit, freplace)
========

root@qemu-armhf:/usr/libexec/kselftests-bpf# modprobe test_bpf test_suite=test_tail_calls
test_bpf: #0 Tail call leaf jited:1 967 PASS
test_bpf: #1 Tail call 2 jited:1 1427 PASS
test_bpf: #2 Tail call 3 jited:1 2373 PASS
test_bpf: #3 Tail call 4 jited:1 2304 PASS
test_bpf: #4 Tail call load/store leaf jited:1 1684 PASS
test_bpf: #5 Tail call load/store jited:1 2249 PASS
test_bpf: torvalds#6 Tail call error path, max count reached jited:1 22538 PASS
test_bpf: torvalds#7 Tail call count preserved across function calls jited:1 1055668 PASS
test_bpf: torvalds#8 Tail call error path, NULL target jited:1 513 PASS
test_bpf: torvalds#9 Tail call error path, index out of range jited:1 392 PASS
test_bpf: test_tail_calls: Summary: 10 PASSED, 0 FAILED, [10/10 JIT'ed]

root@qemu-armhf:/usr/libexec/kselftests-bpf# ./test_progs -n 397/1-12,17-18,23-24,27-31
397/1   tailcalls/tailcall_1:OK
397/2   tailcalls/tailcall_2:OK
397/3   tailcalls/tailcall_3:OK
397/4   tailcalls/tailcall_4:OK
397/5   tailcalls/tailcall_5:OK
397/6   tailcalls/tailcall_6:OK
397/7   tailcalls/tailcall_bpf2bpf_1:OK
397/8   tailcalls/tailcall_bpf2bpf_2:OK
397/9   tailcalls/tailcall_bpf2bpf_3:OK
397/10  tailcalls/tailcall_bpf2bpf_4:OK
397/11  tailcalls/tailcall_bpf2bpf_5:OK
397/12  tailcalls/tailcall_bpf2bpf_6:OK
397/17  tailcalls/tailcall_poke:OK
397/18  tailcalls/tailcall_bpf2bpf_hierarchy_1:OK
397/23  tailcalls/tailcall_bpf2bpf_hierarchy_2:OK
397/24  tailcalls/tailcall_bpf2bpf_hierarchy_3:OK
397/27  tailcalls/tailcall_failure:OK
397/28  tailcalls/reject_tail_call_spin_lock:OK
397/29  tailcalls/reject_tail_call_rcu_lock:OK
397/30  tailcalls/reject_tail_call_preempt_lock:OK
397/31  tailcalls/reject_tail_call_ref:OK
397     tailcalls:OK
Summary: 1/21 PASSED, 0 SKIPPED, 0 FAILED

Signed-off-by: Tony Ambardar <tony.ambardar@gmail.com>
guidosarducci added a commit to guidosarducci/linux that referenced this pull request Jul 27, 2025
 - treat tailcall count as 32-bit for access and update
 - change out_offset scope from file to function
 - minor format/structure changes for consistency

Testing: (skipping fentry, fexit, freplace)
========

root@qemu-armhf:/usr/libexec/kselftests-bpf# modprobe test_bpf test_suite=test_tail_calls
test_bpf: #0 Tail call leaf jited:1 967 PASS
test_bpf: #1 Tail call 2 jited:1 1427 PASS
test_bpf: #2 Tail call 3 jited:1 2373 PASS
test_bpf: #3 Tail call 4 jited:1 2304 PASS
test_bpf: #4 Tail call load/store leaf jited:1 1684 PASS
test_bpf: #5 Tail call load/store jited:1 2249 PASS
test_bpf: torvalds#6 Tail call error path, max count reached jited:1 22538 PASS
test_bpf: torvalds#7 Tail call count preserved across function calls jited:1 1055668 PASS
test_bpf: torvalds#8 Tail call error path, NULL target jited:1 513 PASS
test_bpf: torvalds#9 Tail call error path, index out of range jited:1 392 PASS
test_bpf: test_tail_calls: Summary: 10 PASSED, 0 FAILED, [10/10 JIT'ed]

root@qemu-armhf:/usr/libexec/kselftests-bpf# ./test_progs -n 397/1-12,17-18,23-24,27-31
397/1   tailcalls/tailcall_1:OK
397/2   tailcalls/tailcall_2:OK
397/3   tailcalls/tailcall_3:OK
397/4   tailcalls/tailcall_4:OK
397/5   tailcalls/tailcall_5:OK
397/6   tailcalls/tailcall_6:OK
397/7   tailcalls/tailcall_bpf2bpf_1:OK
397/8   tailcalls/tailcall_bpf2bpf_2:OK
397/9   tailcalls/tailcall_bpf2bpf_3:OK
397/10  tailcalls/tailcall_bpf2bpf_4:OK
397/11  tailcalls/tailcall_bpf2bpf_5:OK
397/12  tailcalls/tailcall_bpf2bpf_6:OK
397/17  tailcalls/tailcall_poke:OK
397/18  tailcalls/tailcall_bpf2bpf_hierarchy_1:OK
397/23  tailcalls/tailcall_bpf2bpf_hierarchy_2:OK
397/24  tailcalls/tailcall_bpf2bpf_hierarchy_3:OK
397/27  tailcalls/tailcall_failure:OK
397/28  tailcalls/reject_tail_call_spin_lock:OK
397/29  tailcalls/reject_tail_call_rcu_lock:OK
397/30  tailcalls/reject_tail_call_preempt_lock:OK
397/31  tailcalls/reject_tail_call_ref:OK
397     tailcalls:OK
Summary: 1/21 PASSED, 0 SKIPPED, 0 FAILED

Signed-off-by: Tony Ambardar <tony.ambardar@gmail.com>
guidosarducci added a commit to guidosarducci/linux that referenced this pull request Jul 30, 2025
 - treat tailcall count as 32-bit for access and update
 - change out_offset scope from file to function
 - minor format/structure changes for consistency

Testing: (skipping fentry, fexit, freplace)
========

root@qemu-armhf:/usr/libexec/kselftests-bpf# modprobe test_bpf test_suite=test_tail_calls
test_bpf: #0 Tail call leaf jited:1 967 PASS
test_bpf: #1 Tail call 2 jited:1 1427 PASS
test_bpf: #2 Tail call 3 jited:1 2373 PASS
test_bpf: #3 Tail call 4 jited:1 2304 PASS
test_bpf: #4 Tail call load/store leaf jited:1 1684 PASS
test_bpf: #5 Tail call load/store jited:1 2249 PASS
test_bpf: torvalds#6 Tail call error path, max count reached jited:1 22538 PASS
test_bpf: torvalds#7 Tail call count preserved across function calls jited:1 1055668 PASS
test_bpf: torvalds#8 Tail call error path, NULL target jited:1 513 PASS
test_bpf: torvalds#9 Tail call error path, index out of range jited:1 392 PASS
test_bpf: test_tail_calls: Summary: 10 PASSED, 0 FAILED, [10/10 JIT'ed]

root@qemu-armhf:/usr/libexec/kselftests-bpf# ./test_progs -n 397/1-12,17-18,23-24,27-31
397/1   tailcalls/tailcall_1:OK
397/2   tailcalls/tailcall_2:OK
397/3   tailcalls/tailcall_3:OK
397/4   tailcalls/tailcall_4:OK
397/5   tailcalls/tailcall_5:OK
397/6   tailcalls/tailcall_6:OK
397/7   tailcalls/tailcall_bpf2bpf_1:OK
397/8   tailcalls/tailcall_bpf2bpf_2:OK
397/9   tailcalls/tailcall_bpf2bpf_3:OK
397/10  tailcalls/tailcall_bpf2bpf_4:OK
397/11  tailcalls/tailcall_bpf2bpf_5:OK
397/12  tailcalls/tailcall_bpf2bpf_6:OK
397/17  tailcalls/tailcall_poke:OK
397/18  tailcalls/tailcall_bpf2bpf_hierarchy_1:OK
397/23  tailcalls/tailcall_bpf2bpf_hierarchy_2:OK
397/24  tailcalls/tailcall_bpf2bpf_hierarchy_3:OK
397/27  tailcalls/tailcall_failure:OK
397/28  tailcalls/reject_tail_call_spin_lock:OK
397/29  tailcalls/reject_tail_call_rcu_lock:OK
397/30  tailcalls/reject_tail_call_preempt_lock:OK
397/31  tailcalls/reject_tail_call_ref:OK
397     tailcalls:OK
Summary: 1/21 PASSED, 0 SKIPPED, 0 FAILED

Signed-off-by: Tony Ambardar <tony.ambardar@gmail.com>
guidosarducci added a commit to guidosarducci/linux that referenced this pull request Jul 30, 2025
 - treat tailcall count as 32-bit for access and update
 - change out_offset scope from file to function
 - minor format/structure changes for consistency

Testing: (skipping fentry, fexit, freplace)
========

root@qemu-armhf:/usr/libexec/kselftests-bpf# modprobe test_bpf test_suite=test_tail_calls
test_bpf: #0 Tail call leaf jited:1 967 PASS
test_bpf: #1 Tail call 2 jited:1 1427 PASS
test_bpf: #2 Tail call 3 jited:1 2373 PASS
test_bpf: #3 Tail call 4 jited:1 2304 PASS
test_bpf: #4 Tail call load/store leaf jited:1 1684 PASS
test_bpf: #5 Tail call load/store jited:1 2249 PASS
test_bpf: torvalds#6 Tail call error path, max count reached jited:1 22538 PASS
test_bpf: torvalds#7 Tail call count preserved across function calls jited:1 1055668 PASS
test_bpf: torvalds#8 Tail call error path, NULL target jited:1 513 PASS
test_bpf: torvalds#9 Tail call error path, index out of range jited:1 392 PASS
test_bpf: test_tail_calls: Summary: 10 PASSED, 0 FAILED, [10/10 JIT'ed]

root@qemu-armhf:/usr/libexec/kselftests-bpf# ./test_progs -n 397/1-12,17-18,23-24,27-31
397/1   tailcalls/tailcall_1:OK
397/2   tailcalls/tailcall_2:OK
397/3   tailcalls/tailcall_3:OK
397/4   tailcalls/tailcall_4:OK
397/5   tailcalls/tailcall_5:OK
397/6   tailcalls/tailcall_6:OK
397/7   tailcalls/tailcall_bpf2bpf_1:OK
397/8   tailcalls/tailcall_bpf2bpf_2:OK
397/9   tailcalls/tailcall_bpf2bpf_3:OK
397/10  tailcalls/tailcall_bpf2bpf_4:OK
397/11  tailcalls/tailcall_bpf2bpf_5:OK
397/12  tailcalls/tailcall_bpf2bpf_6:OK
397/17  tailcalls/tailcall_poke:OK
397/18  tailcalls/tailcall_bpf2bpf_hierarchy_1:OK
397/23  tailcalls/tailcall_bpf2bpf_hierarchy_2:OK
397/24  tailcalls/tailcall_bpf2bpf_hierarchy_3:OK
397/27  tailcalls/tailcall_failure:OK
397/28  tailcalls/reject_tail_call_spin_lock:OK
397/29  tailcalls/reject_tail_call_rcu_lock:OK
397/30  tailcalls/reject_tail_call_preempt_lock:OK
397/31  tailcalls/reject_tail_call_ref:OK
397     tailcalls:OK
Summary: 1/21 PASSED, 0 SKIPPED, 0 FAILED

Signed-off-by: Tony Ambardar <tony.ambardar@gmail.com>
guidosarducci added a commit to guidosarducci/linux that referenced this pull request Jul 30, 2025
 - treat tailcall count as 32-bit for access and update
 - change out_offset scope from file to function
 - minor format/structure changes for consistency

Testing: (skipping fentry, fexit, freplace)
========

root@qemu-armhf:/usr/libexec/kselftests-bpf# modprobe test_bpf test_suite=test_tail_calls
test_bpf: #0 Tail call leaf jited:1 967 PASS
test_bpf: #1 Tail call 2 jited:1 1427 PASS
test_bpf: #2 Tail call 3 jited:1 2373 PASS
test_bpf: #3 Tail call 4 jited:1 2304 PASS
test_bpf: #4 Tail call load/store leaf jited:1 1684 PASS
test_bpf: #5 Tail call load/store jited:1 2249 PASS
test_bpf: torvalds#6 Tail call error path, max count reached jited:1 22538 PASS
test_bpf: torvalds#7 Tail call count preserved across function calls jited:1 1055668 PASS
test_bpf: torvalds#8 Tail call error path, NULL target jited:1 513 PASS
test_bpf: torvalds#9 Tail call error path, index out of range jited:1 392 PASS
test_bpf: test_tail_calls: Summary: 10 PASSED, 0 FAILED, [10/10 JIT'ed]

root@qemu-armhf:/usr/libexec/kselftests-bpf# ./test_progs -n 397/1-12,17-18,23-24,27-31
397/1   tailcalls/tailcall_1:OK
397/2   tailcalls/tailcall_2:OK
397/3   tailcalls/tailcall_3:OK
397/4   tailcalls/tailcall_4:OK
397/5   tailcalls/tailcall_5:OK
397/6   tailcalls/tailcall_6:OK
397/7   tailcalls/tailcall_bpf2bpf_1:OK
397/8   tailcalls/tailcall_bpf2bpf_2:OK
397/9   tailcalls/tailcall_bpf2bpf_3:OK
397/10  tailcalls/tailcall_bpf2bpf_4:OK
397/11  tailcalls/tailcall_bpf2bpf_5:OK
397/12  tailcalls/tailcall_bpf2bpf_6:OK
397/17  tailcalls/tailcall_poke:OK
397/18  tailcalls/tailcall_bpf2bpf_hierarchy_1:OK
397/23  tailcalls/tailcall_bpf2bpf_hierarchy_2:OK
397/24  tailcalls/tailcall_bpf2bpf_hierarchy_3:OK
397/27  tailcalls/tailcall_failure:OK
397/28  tailcalls/reject_tail_call_spin_lock:OK
397/29  tailcalls/reject_tail_call_rcu_lock:OK
397/30  tailcalls/reject_tail_call_preempt_lock:OK
397/31  tailcalls/reject_tail_call_ref:OK
397     tailcalls:OK
Summary: 1/21 PASSED, 0 SKIPPED, 0 FAILED

Signed-off-by: Tony Ambardar <tony.ambardar@gmail.com>
guidosarducci added a commit to guidosarducci/linux that referenced this pull request Aug 5, 2025
 - treat tailcall count as 32-bit for access and update
 - change out_offset scope from file to function
 - minor format/structure changes for consistency

Testing: (skipping fentry, fexit, freplace)
========

root@qemu-armhf:/usr/libexec/kselftests-bpf# modprobe test_bpf test_suite=test_tail_calls
test_bpf: #0 Tail call leaf jited:1 967 PASS
test_bpf: #1 Tail call 2 jited:1 1427 PASS
test_bpf: #2 Tail call 3 jited:1 2373 PASS
test_bpf: #3 Tail call 4 jited:1 2304 PASS
test_bpf: #4 Tail call load/store leaf jited:1 1684 PASS
test_bpf: #5 Tail call load/store jited:1 2249 PASS
test_bpf: torvalds#6 Tail call error path, max count reached jited:1 22538 PASS
test_bpf: torvalds#7 Tail call count preserved across function calls jited:1 1055668 PASS
test_bpf: torvalds#8 Tail call error path, NULL target jited:1 513 PASS
test_bpf: torvalds#9 Tail call error path, index out of range jited:1 392 PASS
test_bpf: test_tail_calls: Summary: 10 PASSED, 0 FAILED, [10/10 JIT'ed]

root@qemu-armhf:/usr/libexec/kselftests-bpf# ./test_progs -n 397/1-12,17-18,23-24,27-31
397/1   tailcalls/tailcall_1:OK
397/2   tailcalls/tailcall_2:OK
397/3   tailcalls/tailcall_3:OK
397/4   tailcalls/tailcall_4:OK
397/5   tailcalls/tailcall_5:OK
397/6   tailcalls/tailcall_6:OK
397/7   tailcalls/tailcall_bpf2bpf_1:OK
397/8   tailcalls/tailcall_bpf2bpf_2:OK
397/9   tailcalls/tailcall_bpf2bpf_3:OK
397/10  tailcalls/tailcall_bpf2bpf_4:OK
397/11  tailcalls/tailcall_bpf2bpf_5:OK
397/12  tailcalls/tailcall_bpf2bpf_6:OK
397/17  tailcalls/tailcall_poke:OK
397/18  tailcalls/tailcall_bpf2bpf_hierarchy_1:OK
397/23  tailcalls/tailcall_bpf2bpf_hierarchy_2:OK
397/24  tailcalls/tailcall_bpf2bpf_hierarchy_3:OK
397/27  tailcalls/tailcall_failure:OK
397/28  tailcalls/reject_tail_call_spin_lock:OK
397/29  tailcalls/reject_tail_call_rcu_lock:OK
397/30  tailcalls/reject_tail_call_preempt_lock:OK
397/31  tailcalls/reject_tail_call_ref:OK
397     tailcalls:OK
Summary: 1/21 PASSED, 0 SKIPPED, 0 FAILED

Signed-off-by: Tony Ambardar <tony.ambardar@gmail.com>
hbirth pushed a commit to hbirth/linux that referenced this pull request Aug 6, 2025
fuse: avoid tmp copying of data for writeback cached data
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

7 participants