@@ -218,20 +218,20 @@ TORCH_LIBRARY_IMPL(torchmdnet_extensions, CompositeImplicitAutograd, m) {
218
218
});
219
219
}
220
220
221
- // Explicit device backend registrations for PyTorch versions that do not
222
- // automatically fall back to CompositeImplicitAutograd for device dispatch.
223
- TORCH_LIBRARY_IMPL (torchmdnet_extensions, CPU, m) {
224
- m.impl (" get_neighbor_pairs" ,
225
- [](const std::string& strategy, const Tensor& positions, const Tensor& batch,
226
- const Tensor& box_vectors, bool use_periodic, const Scalar& cutoff_lower,
227
- const Scalar& cutoff_upper, const Scalar& max_num_pairs, bool loop,
228
- bool include_transpose) {
229
- auto result = NeighborAutograd::apply (strategy, positions, batch, box_vectors,
230
- use_periodic, cutoff_lower, cutoff_upper,
231
- max_num_pairs, loop, include_transpose);
232
- return std::make_tuple (result[0 ], result[1 ], result[2 ], result[3 ]);
233
- });
234
- }
221
+ // // Explicit device backend registrations for PyTorch versions that do not
222
+ // // automatically fall back to CompositeImplicitAutograd for device dispatch.
223
+ // TORCH_LIBRARY_IMPL(torchmdnet_extensions, CPU, m) {
224
+ // m.impl("get_neighbor_pairs",
225
+ // [](const std::string& strategy, const Tensor& positions, const Tensor& batch,
226
+ // const Tensor& box_vectors, bool use_periodic, const Scalar& cutoff_lower,
227
+ // const Scalar& cutoff_upper, const Scalar& max_num_pairs, bool loop,
228
+ // bool include_transpose) {
229
+ // auto result = NeighborAutograd::apply(strategy, positions, batch, box_vectors,
230
+ // use_periodic, cutoff_lower, cutoff_upper,
231
+ // max_num_pairs, loop, include_transpose);
232
+ // return std::make_tuple(result[0], result[1], result[2], result[3]);
233
+ // });
234
+ // }
235
235
236
236
// TORCH_LIBRARY_IMPL(torchmdnet_extensions, CUDA, m) {
237
237
// m.impl("get_neighbor_pairs",
0 commit comments