-
Notifications
You must be signed in to change notification settings - Fork 96
/
init.lua
80 lines (63 loc) · 1.92 KB
/
init.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
require 'nn'
require 'graph'
nngraph = {}
require('nngraph.nest')
require('nngraph.node')
require('nngraph.gmodule')
require('nngraph.graphinspecting')
require('nngraph.JustElement')
require('nngraph.JustTable')
require('nngraph.ModuleFromCriterion')
-- handy functions
local utils = require('nngraph.utils')
local istensor = torch.isTensor
local istable = utils.istable
local istorchclass = utils.istorchclass
-- simpler todot functions
nngraph.simple_print = require('nngraph.simple_print')
-- Modify the __call function to hack into nn.Module
local Module = torch.getmetatable('nn.Module')
function Module:__call__(...)
local nArgs = select("#", ...)
assert(nArgs <= 1, 'Use {input1, input2} to pass multiple inputs.')
local input = ...
if nArgs == 1 and input == nil then
error(utils.expectingNodeErrorMessage(input, 'inputs', 1))
end
-- Disallow passing empty table, in case someone passes a table with some
-- typo'd variable name in.
if type(input) == 'table' and next(input) == nil then
error('cannot pass an empty table of inputs. To indicate no incoming ' ..
'connections, leave the second set of parens blank.')
end
if not istable(input) then
input = {input}
end
local mnode = nngraph.Node({module=self})
local dnode
for i = 1, utils.tableMaxN(input) do
dnode = input[i]
if torch.typename(dnode) ~= 'nngraph.Node' then
error(utils.expectingNodeErrorMessage(dnode, 'inputs', i))
end
mnode:add(dnode,true)
end
return mnode
end
local Criterion = torch.getmetatable('nn.Criterion')
function Criterion:__call__(...)
return nn.ModuleFromCriterion(self)(...)
end
Module.__unm__ = function( obj )
return obj()
end
Module.__sub__ = function( prev, next )
return next(prev)
end
do
local Node = torch.getmetatable('nngraph.Node')
Node.__sub__ = function( prev, next )
return next(prev)
end
end
return nngraph