You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
MLX Omni Server is a local inference server powered by Apple's MLX framework, specifically designed for Apple Silicon (M-series) chips. It implements OpenAI-compatible API endpoints, enabling seamless integration with existing OpenAI SDK clients while leveraging the power of local ML inference.
This repository demonstrates how to leverage OpenAI's GPT-4 models with JSON Strict Mode to extract structured data from web pages. It combines web scraping capabilities from Firecrawl with OpenAI's advanced language models to create a powerful data extraction pipeline.
Code from the ODSC Agentic Graph RAG workshop combining vector, FTS & graph retrieval for RAG. Includes observability and guardrails for evaluating outputs.
Structured Output OpenAI Showcase. A Prime Numbers Calculator that demonstrates OpenAI's structured output capabilities. This repository is public because current LLM examples often use outdated API calls, and this script aims to help users quickly experiment with structured outputs.
Schema-first AI analysis CLI that transforms messy data into structured insights. Define your output format, get guaranteed JSON results from any source. Combines OpenAI models with multi-tool orchestration (Code Interpreter, File Search, Web Search, MCP) for AI-powered data synthesis.
This repository demonstrates how to use OpenAI's Response API (with GPT-4.1 and tool calling) to extract the main product image URL from an e-commerce product page. It provides both Python and TypeScript implementations, returning a structured output for easy integration.
Control LLM token generation by directly manipulating logits to enforce structured outputs. Built with Hugging Face Transformers and demonstrated using Qwen2.5-0.5B.
This repository demonstrates structured data extraction using various language models and frameworks. It includes examples of generating JSON outputs for name and age extraction from text prompts. The project leverages models like Qwen and frameworks such as LangChain, vLLM, and Outlines for Transformers models.