You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
This project(RAG) focuses on operationalizing LLMs by integrating OpenAI, MLflow, FastAPI, and RAGAS for evaluation. It allows users to deploy and manage LLMs, track model runs, and log evaluation metrics in MLflow. The project also features MLflow traces that logs all the user inputs ,responses ,retrieved contexts ,and other essential metrices.
This project aims to develop an enterprise-grade Retrieval-Augmented Generation (RAG) system by automating the prompt engineering process. The goal is to create a comprehensive solution that simplifies the task of crafting effective prompts for Language Models (LLMs), enabling businesses to leverage advanced AI capabilities more efficiently.
AI-driven prompt generation and evaluation system, designed to optimize the use of Language Models (LLMs) in various industries. The project consists of both frontend and backend components, facilitating prompt generation, automatic evaluation data generation, and prompt testing.
This Repo is Public Repo which Help to Find the AI response , it Checks the following thing,Provides quantitative evaluation on different metrics like factuality, coherence, and relevance to assess the quality of responses.
LLM AI chatbot using Advanced Retrieval Augmented Generation (RAG), Langchain, and Streamlit to answer questions about information contained in numerous files.