You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Predict the profitability of potential coffee shop locations using SQL and Python. Combines data engineering with feature-rich regression modeling, visual analytics, and business insights to support data-driven site selection and retail decision-making.
This repository contains two projects demonstrating the use of multiple linear regression for predictive modeling. The first project predicts startup profits based on business expenditures, while the second predicts the selling price of Toyota Corolla cars using various car features. The projects include detailed analysis, model development.
Прогнозирование прибыли от нефтяных скважин для компании «ГлавРосГосНефть» с использованием линейной регрессии и анализа рисков (Bootstrap). Цель — определить регион с максимальной ожидаемой прибылью и минимальным риском убытков.