You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Multi-language suite for high-performance solvers of differential equations and scientific machine learning (SciML) components. Ordinary differential equations (ODEs), stochastic differential equations (SDEs), delay differential equations (DDEs), differential-algebraic equations (DAEs), and more in Julia.
Build and simulate jump equations like Gillespie simulations and jump diffusions with constant and state-dependent rates and mix with differential equations and scientific machine learning (SciML)
Extension functionality which uses Stan.jl, DynamicHMC.jl, and Turing.jl to estimate the parameters to differential equations and perform Bayesian probabilistic scientific machine learning
A Julia package for training recurrent neural networks (RNNs), vanilla neural ordinary differential equations (nODEs) and gated neural ordinary differential equations (gnODEs).