Implementación de un ciclo de vida MLOps completo: un clasificador de ML servido con FastAPI, Docker, DVC y CI/CD con GitHub Actions.
-
Updated
Aug 20, 2025 - Jupyter Notebook
Implementación de un ciclo de vida MLOps completo: un clasificador de ML servido con FastAPI, Docker, DVC y CI/CD con GitHub Actions.
An end-to-end MLOps project demonstrating a modular machine learning pipeline for predicting student performance, featuring a Flask web interface and deployment on AWS.
An end-to-end MLOps project for text summarization using the HuggingFace Pegasus model. Includes a full training pipeline, evaluation, and a FastAPI for deployment.
Add a description, image, and links to the end-to-end-ml-project topic page so that developers can more easily learn about it.
To associate your repository with the end-to-end-ml-project topic, visit your repo's landing page and select "manage topics."