Gemma3 RAG benchmark system for Japanese river/dam/erosion control technical standards.
-
Updated
Nov 19, 2025 - Python
Gemma3 RAG benchmark system for Japanese river/dam/erosion control technical standards.
Cancer-RAPTOR : GPU-accelerated hierarchical search system for cancer medical information
Retrieval-Augmented Generation (RAG) systems with Agentic capabilities, featuring multi-strategy search, confidence evaluation, and autonomous process control.
🌳 Open-source RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval - Complete open-source implementation with 100% local LLMs (Granite Code 8B + mxbai-embed-large)
建設の技術基準に関する質問の専門性粒度(細かい/粗い)を96%正確に自動判定し、最適なRAGシステム(ColBERT/Naive)を選択する実用的なAgentic RAGシステムのMVPです。2025年11月に公開された河川砂防ダムの技術基準を対象に4つのRAGシステムを構築し、専門性の粒度が異なる200問の質問に対して、精度と速度を比較した。
Treg免疫細胞系譜を例に、RAPTORアルゴリズムを実装したGPU加速対応のRAG(Retrieval-Augmented Generation)システムです。実際に、5ノードから14ノードを実現しました。
An advanced RAG (Retrieval-Augmented Generation) system using RAPTOR algorithm to hierarchically organize and retrieve lessons from the 2011 Great East Japan Earthquake and Tsunami for educational purposes.
Multimodal RAPTOR for Disaster Documents using ColVBERT & BLIP. Hierarchical retrieval system over 46 tsunami-related PDFs (2378 pages), combining BLIP-based image captioning, ColVBERT embeddings, and GPT-OSS-20b long-context summarization. Optimized for fast multimodal tree construction and disaster knowledge preservation.
Add a description, image, and links to the domain-specific-rag topic page so that developers can more easily learn about it.
To associate your repository with the domain-specific-rag topic, visit your repo's landing page and select "manage topics."