Security and Privacy Risk Simulator for Machine Learning (arXiv:2312.17667)
-
Updated
May 10, 2024 - C++
Security and Privacy Risk Simulator for Machine Learning (arXiv:2312.17667)
[NeurIPS 2019] H. Chen*, H. Zhang*, S. Si, Y. Li, D. Boning and C.-J. Hsieh, Robustness Verification of Tree-based Models (*equal contribution)
A fork of Mozilla DeepSpeech to enable research into audio adversarial examples for Speech-to-Text for CTC models.
Course work for SSU's CS480 which is a survey of techniques that simulate human intelligence.
Add a description, image, and links to the adversarial-machine-learning topic page so that developers can more easily learn about it.
To associate your repository with the adversarial-machine-learning topic, visit your repo's landing page and select "manage topics."