Skip to content

Latest commit

 

History

History
108 lines (89 loc) · 5.09 KB

ml-datasource.md

File metadata and controls

108 lines (89 loc) · 5.09 KB
layout title displayTitle
global
Data sources
Data sources

In this section, we introduce how to use data source in ML to load data. Besides some general data sources such as Parquet, CSV, JSON and JDBC, we also provide some specific data sources for ML.

Table of Contents

  • This will become a table of contents (this text will be scraped). {:toc}

Image data source

This image data source is used to load image files from a directory, it can load compressed image (jpeg, png, etc.) into raw image representation via ImageIO in Java library. The loaded DataFrame has one StructType column: "image", containing image data stored as image schema. The schema of the image column is:

  • origin: StringType (represents the file path of the image)
  • height: IntegerType (height of the image)
  • width: IntegerType (width of the image)
  • nChannels: IntegerType (number of image channels)
  • mode: IntegerType (OpenCV-compatible type)
  • data: BinaryType (Image bytes in OpenCV-compatible order: row-wise BGR in most cases)
[`ImageDataSource`](api/scala/index.html#org.apache.spark.ml.source.image.ImageDataSource) implements a Spark SQL data source API for loading image data as a DataFrame.

{% highlight scala %} scala> val df = spark.read.format("image").option("dropInvalid", true).load("data/mllib/images/origin/kittens") df: org.apache.spark.sql.DataFrame = [image: struct<origin: string, height: int ... 4 more fields>]

scala> df.select("image.origin", "image.width", "image.height").show(truncate=false) +-----------------------------------------------------------------------+-----+------+ |origin |width|height| +-----------------------------------------------------------------------+-----+------+ |file:///spark/data/mllib/images/origin/kittens/54893.jpg |300 |311 | |file:///spark/data/mllib/images/origin/kittens/DP802813.jpg |199 |313 | |file:///spark/data/mllib/images/origin/kittens/29.5.a_b_EGDP022204.jpg |300 |200 | |file:///spark/data/mllib/images/origin/kittens/DP153539.jpg |300 |296 | +-----------------------------------------------------------------------+-----+------+ {% endhighlight %}

[`ImageDataSource`](api/java/org/apache/spark/ml/source/image/ImageDataSource.html) implements Spark SQL data source API for loading image data as DataFrame.

{% highlight java %} Dataset imagesDF = spark.read().format("image").option("dropInvalid", true).load("data/mllib/images/origin/kittens"); imageDF.select("image.origin", "image.width", "image.height").show(false); /* Will output: +-----------------------------------------------------------------------+-----+------+ |origin |width|height| +-----------------------------------------------------------------------+-----+------+ |file:///spark/data/mllib/images/origin/kittens/54893.jpg |300 |311 | |file:///spark/data/mllib/images/origin/kittens/DP802813.jpg |199 |313 | |file:///spark/data/mllib/images/origin/kittens/29.5.a_b_EGDP022204.jpg |300 |200 | |file:///spark/data/mllib/images/origin/kittens/DP153539.jpg |300 |296 | +-----------------------------------------------------------------------+-----+------+ */ {% endhighlight %}

In PySpark we provide Spark SQL data source API for loading image data as DataFrame.

{% highlight python %}

df = spark.read.format("image").option("dropInvalid", true).load("data/mllib/images/origin/kittens") df.select("image.origin", "image.width", "image.height").show(truncate=False) +-----------------------------------------------------------------------+-----+------+ |origin |width|height| +-----------------------------------------------------------------------+-----+------+ |file:///spark/data/mllib/images/origin/kittens/54893.jpg |300 |311 | |file:///spark/data/mllib/images/origin/kittens/DP802813.jpg |199 |313 | |file:///spark/data/mllib/images/origin/kittens/29.5.a_b_EGDP022204.jpg |300 |200 | |file:///spark/data/mllib/images/origin/kittens/DP153539.jpg |300 |296 | +-----------------------------------------------------------------------+-----+------+ {% endhighlight %}

In SparkR we provide Spark SQL data source API for loading image data as DataFrame.

{% highlight r %}

df = read.df("data/mllib/images/origin/kittens", "image") head(select(df, df$image.origin, df$image.width, df$image.height))

1 file:///spark/data/mllib/images/origin/kittens/54893.jpg 2 file:///spark/data/mllib/images/origin/kittens/DP802813.jpg 3 file:///spark/data/mllib/images/origin/kittens/29.5.a_b_EGDP022204.jpg 4 file:///spark/data/mllib/images/origin/kittens/DP153539.jpg width height 1 300 311 2 199 313 3 300 200 4 300 296

{% endhighlight %}