-
Notifications
You must be signed in to change notification settings - Fork 50
/
run_extraction.py
237 lines (199 loc) · 10.5 KB
/
run_extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import argparse
from collections import defaultdict
from data_utils import load_dataset
from utils import *
def main(models, datasets, all_shots, num_seeds, subsample_test_set, api_num_log_prob, bs, use_saved_results):
"""
Run experiment or load past results, print accuracy
"""
default_params = {
'subsample_test_set': subsample_test_set,
'api_num_log_prob': api_num_log_prob,
'bs': bs
}
all_params = []
for model in models:
for dataset in datasets:
for num_shots in all_shots:
for seed in range(num_seeds):
p = deepcopy(default_params)
p['model'] = model
p['dataset'] = dataset
p['seed'] = seed
p['num_shots'] = num_shots
p['expr_name'] = f"{p['dataset']}_{p['model']}_{p['num_shots']}shot_{repr(p['subsample_test_set'])}_subsample_seed{p['seed']}"
all_params.append(p)
# query the model and save the responses
if use_saved_results:
load_results(all_params)
else:
save_results(all_params)
def save_results(params_list, freeze_test_set=True):
"""
Save all model's responses and the rest of configs into a pickle file
"""
result_tree = dict()
for param_index, params in enumerate(params_list):
print("\nExperiment name:", params['expr_name'])
### load data
all_train_sentences, all_train_labels, all_test_sentences, all_test_labels = load_dataset(params)
### sample test set
if params['subsample_test_set'] is None:
test_sentences, test_labels = all_test_sentences, all_test_labels
print(f"selecting full test set ({len(all_test_labels)} examples)")
else:
if freeze_test_set:
np.random.seed(0) # always use seed 0 result if freeze
else:
np.random.seed(params['seed'])
test_sentences, test_labels = random_sampling(all_test_sentences, all_test_labels, params['subsample_test_set'])
print(f"selecting {len(test_labels)} subsample of test set")
### sample few-shot training examples
np.random.seed(params['seed'])
train_sentences, train_labels = random_sampling(all_train_sentences, all_train_labels, params['num_shots'])
### Get model's original answers
all_responses_orig, all_prompts_orig = get_model_response(params, train_sentences, train_labels, test_sentences,
return_all_prompts=True, num_tokens_to_predict_override=5)
all_orig_ans = []
for resp in all_responses_orig:
all_orig_ans.append(resp['text'])
### Get contextual-calibrated answer (first token)
# ask model for candidate first token, for each of the test sentence
all_responses, all_prompts = get_model_response(params, train_sentences, train_labels, test_sentences,
return_all_prompts=True, num_tokens_to_predict_override=1)
# calculate calibration constant for each of the candidate token
all_options = set()
for resp in all_responses:
logprobs = resp['logprobs']['top_logprobs'][0] # first token
options = list(logprobs.keys())
all_options.update(options)
content_free_token_list = ["[MASK]", "N/A", ""]
cf_prompts = []
for option in all_options:
for token in content_free_token_list:
prompt = params['prompt_func'](params, train_sentences, train_labels, token, test_label_option=option)
cf_prompts.append(prompt)
cf_probs_dict = defaultdict(lambda: [])
cf_prompts_chunked = list(chunks(cf_prompts, chunk_size_helper(params)))
for chunk_id, prompt_chunk in enumerate(cf_prompts_chunked):
all_resp = complete(prompt_chunk, 0, model=params['model'], echo=True, num_log_probs=1)
for resp in all_resp['choices']:
log_prob = resp['logprobs']['token_logprobs'][-1]
token = resp['logprobs']['tokens'][-1]
prob = np.exp(log_prob)
cf_probs_dict[token].append(prob)
temp_cf_probs_dict = {}
for k, v in cf_probs_dict.items():
temp_cf_probs_dict[k] = np.min(v) # Notice: Min across ensemble of placeholders
cf_probs_dict = temp_cf_probs_dict
# obtain model's calibrated decision
all_reweighted_ans = []
error_count = 0
total_count = 0
for resp in all_responses:
# get all probs
orig_probs_list = []
cf_probs_list = []
all_tokens = []
logprobs = resp['logprobs']['top_logprobs'][0] # first token
for token in list(logprobs.keys()):
total_count += 1
orig_prob = np.exp(logprobs[token])
if token in cf_probs_dict.keys():
cf_prob = cf_probs_dict[token]
orig_probs_list.append(orig_prob)
cf_probs_list.append(cf_prob)
all_tokens.append(token)
else: # hmm cannot find it
error_count += 1
orig_probs_list = np.array(orig_probs_list)
cf_probs_list = np.array(cf_probs_list)
orig_probs_list = orig_probs_list / np.sum(orig_probs_list)
cf_probs_list = cf_probs_list / np.sum(cf_probs_list)
# contextual calibration
W = np.identity(len(orig_probs_list))
b = -1 * np.expand_dims(cf_probs_list, axis=-1)
calibrate_label_probs = np.matmul(W, np.expand_dims(orig_probs_list, axis=-1)) + b
best_idx = np.argmax(calibrate_label_probs)
all_reweighted_ans.append(all_tokens[best_idx])
error_frac = error_count/total_count
if error_frac > 0.01: print(f"WARNING: re-encode error fraction: {error_frac:.2f}")
### Get contextual-calibrated answer (rest of tokens, greedy decode)
for i in range(len(all_prompts)):
all_prompts[i] += all_reweighted_ans[i]
all_responses_greedy, all_prompts = get_model_response(params, train_sentences, train_labels, test_sentences,
return_all_prompts=True, num_tokens_to_predict_override=5-1,
override_prompt=all_prompts)
for i in range(len(all_reweighted_ans)):
all_reweighted_ans[i] += all_responses_greedy[i]['text']
### Get accuracy
all_orig_ans = [ans.strip() for ans in all_orig_ans]
all_reweighted_ans = [ans.strip() for ans in all_reweighted_ans]
orig_accuracy = em_accuracy_helper(all_orig_ans, test_labels)
reweighted_accuracy = em_accuracy_helper(all_reweighted_ans, test_labels)
accuracies = [orig_accuracy, reweighted_accuracy]
print(f"accuracies {accuracies}")
# add to result_tree
keys = [params['dataset'], params['model'], params['num_shots']]
node = result_tree # root
for k in keys:
if not (k in node.keys()):
node[k] = dict()
node = node[k]
node[params['seed']] = accuracies
### savings
result_to_save = dict()
params_to_save = deepcopy(params)
result_to_save['params'] = params_to_save
result_to_save['train_sentences'] = train_sentences
result_to_save['train_labels'] = train_labels
result_to_save['test_sentences'] = test_sentences
result_to_save['test_labels'] = test_labels
result_to_save['all_prompts_orig'] = all_prompts_orig
result_to_save['all_responses_orig'] = all_responses_orig
result_to_save['all_responses_first'] = all_responses
result_to_save['all_responses_greedy'] = all_responses_greedy
result_to_save['all_orig_ans'] = all_orig_ans
result_to_save['all_reweighted_ans'] = all_reweighted_ans
result_to_save['accuracies'] = accuracies
if 'prompt_func' in result_to_save['params'].keys():
params_to_save['prompt_func'] = None
save_pickle(params, result_to_save)
def em_accuracy_helper(prediction, label):
correctness_list = []
for pred, l in zip(prediction, label):
pred = pred.split('\n')[0]
if pred == l:
correctness_list.append(1)
else:
correctness_list.append(0)
return np.mean(correctness_list)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# required arguments
parser.add_argument('--models', dest='models', action='store', required=True, help='name of model(s), e.g., GPT2-XL')
parser.add_argument('--datasets', dest='datasets', action='store', required=True, help='name of dataset(s), e.g., agnews')
parser.add_argument('--num_seeds', dest='num_seeds', action='store', required=True, help='num seeds for the training set', type=int)
parser.add_argument('--all_shots', dest='all_shots', action='store', required=True, help='num training examples to use')
# other arguments
parser.add_argument('--subsample_test_set', dest='subsample_test_set', action='store', required=False, type=int,
default=None, help='size of test set to use to speed up eval. None means using all test set')
parser.add_argument('--api_num_log_prob', dest='api_num_log_prob', action='store', required=False, type=int,
default=100, help='number of top tokens to ask for when querying the model. Capped at 100 for OpenAI GPT-3 API')
parser.add_argument('--bs', dest='bs', action='store', required=False, type=int, default=None,
help='batch size for model queries. For OpenAI API, capped at 20. For local running, set this to max out your GPU memory.')
# flags
parser.add_argument('--use_saved_results', dest='use_saved_results', action='store_const', const=True, default=False,
help='whether to load the results from pickle files and not run the model')
args = parser.parse_args()
args = vars(args)
# simple processing
def convert_to_list(items, is_int=False):
if is_int:
return [int(s.strip()) for s in items.split(",")]
else:
return [s.strip() for s in items.split(",")]
args['models'] = convert_to_list(args['models'])
args['datasets'] = convert_to_list(args['datasets'])
args['all_shots'] = convert_to_list(args['all_shots'], is_int=True)
main(**args)