Simulating FL using a single process in your personal laptop or server. This is helpful when researchers hope to try a quick algorithmic idea in small synthetic datasets (MNIST, Shakespeare, etc.) and small models (ResNet-18, Logistic Regression, etc.).
In this example, we will present how to apply the standalone simulation of FedML in the MINIST image classification using a single process. The complete code is available at https://github.com/FedML-AI/FedML/tree/master/python/examples/simulation/sp_fedavg_mnist_lr_example.
In this section, we present how to implement a stand-alone simulated version of the FedAvg algorithm running on MNIST dataset using FedML with a single line of code.
First we should create a new python environment with conda
conda create -n fedml python
conda activate fedml
Then we should make sure that we have completed the installation of fedml and the preparation of the dataset.
python -m pip install --upgrade pip
python -m pip install fedml
The dataset is provided in this case, if you need to use other datasets you can refer to the detailed steps in Get Start.
Once we have installed the dependent packages, we can set the parameters by editing the fedml_config.yaml
as shown below, which defines the parameters common_args
, data_args
, model_args
, train_args
, validation_args
, device_args
, tracking_args
and tracking_args
.
common_args:
training_type: "simulation"
random_seed: 0
data_args:
dataset: "mnist"
data_cache_dir: "../../../data/mnist"
partition_method: "hetero"
partition_alpha: 0.5
model_args:
model: "lr"
train_args:
federated_optimizer: "FedAvg"
client_id_list: "[]"
client_num_in_total: 1000
client_num_per_round: 10
comm_round: 200
epochs: 1
batch_size: 10
client_optimizer: sgd
learning_rate: 0.03
weight_decay: 0.001
validation_args:
frequency_of_the_test: 5
device_args:
using_gpu: false
gpu_id: 0
comm_args:
backend: "sp"
tracking_args:
log_file_dir: ./log
enable_wandb: false
wandb_key: ee0b5f53d949c84cee7decbe7a629e63fb2f8408
wandb_entity: fedml-ai
wandb_project: simulation
run_name: fedml_torch_fedavg_mnist_lr
In the current example,common_args.training_type
is "simulation", which means that the training here is a stand-alone simulation version,data_args.dataset
is "mnist" corresponding to the current dataset used, model_args.model
is "lr", which means that the current model used is LogisticRegression (lr) . Please refer to https://github.com/FedML-AI/FedML/tree/master/python/examples for other parameters and more detailed setup instructions.
Now that we have configured all the dependent environments, we can quickly implement the training of a federation learning model on the MNIST dataset for a single machine simulation with the following line of code:
python torch_fedavg_mnist_lr_one_line_example.py --cf fedml_config.yaml
The --cf fedml_config.yaml
specifies the corresponding parameter settings file.
We can see the following output when the program is just running:
[2022-04-21 15:42:34,124] [INFO] [device.py:14:get_device] device = cpu
[2022-04-21 15:42:34,124] [INFO] [data_loader.py:19:download_mnist] ./MNIST.zip
100% [......................................................................] 128363870 / 128363870[2022-04-21 15:44:10,003] [INFO] [data_loader.py:63:load_for_simulation] load_data. dataset_name = mnist
[2022-04-21 15:45:25,817] [INFO] [model_hub.py:14:create] create_model. model_name = lr, output_dim = 10
[2022-04-21 15:45:25,818] [INFO] [model_hub.py:17:create] LogisticRegression + MNIST
[2022-04-21 15:45:25,860] [INFO] [fedavg_api.py:41:__init__] model = LogisticRegression(
(linear): Linear(in_features=784, out_features=10, bias=True)
)
[2022-04-21 15:45:25,861] [INFO] [fedavg_api.py:50:__init__] self.model_trainer = <fedml.simulation.fedavg.my_model_trainer_classification.MyModelTrainer object at 0x000001CF758D8F88>
[2022-04-21 15:45:25,867] [INFO] [fedavg_api.py:81:train] self.model_trainer = <fedml.simulation.fedavg.my_model_trainer_classification.MyModelTrainer object at 0x000001CF758D8F88>
[2022-04-21 15:45:26,046] [INFO] [my_model_trainer_classification.py:52:train] Update Epoch: 0 [10/20 (50%)] Loss: 2.369121
[2022-04-21 15:45:26,051] [INFO] [my_model_trainer_classification.py:52:train] Update Epoch: 0 [20/20 (100%)] Loss: 2.222175
[2022-04-21 15:45:26,053] [INFO] [my_model_trainer_classification.py:57:train] Client Index = 0 Epoch: 0 Loss: 2.295648
[2022-04-21 15:45:26,057] [INFO] [my_model_trainer_classification.py:52:train] Update Epoch: 0 [10/80 (12%)] Loss: 2.237719
[2022-04-21 15:45:26,059] [INFO] [my_model_trainer_classification.py:52:train] Update Epoch: 0 [20/80 (25%)] Loss: 2.212439
[2022-04-21 15:45:26,060] [INFO] [my_model_trainer_classification.py:52:train] Update Epoch: 0 [30/80 (38%)] Loss: 2.156245
[2022-04-21 15:45:26,062] [INFO] [my_model_trainer_classification.py:52:train] Update Epoch: 0 [40/80 (50%)] Loss: 2.132013
[2022-04-21 15:45:26,064] [INFO] [my_model_trainer_classification.py:52:train] Update Epoch: 0 [50/80 (62%)] Loss: 1.966263
[2022-04-21 15:45:26,067] [INFO] [my_model_trainer_classification.py:52:train] Update Epoch: 0 [60/80 (75%)] Loss: 2.014680
[2022-04-21 15:45:26,068] [INFO] [my_model_trainer_classification.py:52:train] Update Epoch: 0 [70/80 (88%)] Loss: 1.959164
[2022-04-21 15:45:26,070] [INFO] [my_model_trainer_classification.py:52:train] Update Epoch: 0 [80/80 (100%)] Loss: 2.071570
[2022-04-21 15:45:26,070] [INFO] [my_model_trainer_classification.py:57:train] Client Index = 0 Epoch: 0 Loss: 2.093762
At the end of the program run, we can see the following output,which indicate that we have successfully finished the entire process:
INFO:root:################Communication round : 197
INFO:root:client_indexes = [954 887 866 96 130 891 444 925 516 308]
INFO:root:client_indexes = [954 887 866 96 130 891 444 925 516 308]
INFO:root:################Communication round : 198
INFO:root:client_indexes = [276 317 986 132 19 794 485 973 28 750]
INFO:root:client_indexes = [276 317 986 132 19 794 485 973 28 750]
INFO:root:################Communication round : 199
INFO:root:client_indexes = [221 905 942 888 711 479 506 685 436 661]
INFO:root:client_indexes = [221 905 942 888 711 479 506 685 436 661]
INFO:root:################local_test_on_all_clients : 199
INFO:root:{'training_acc': 0.8190029839128179, 'training_loss': 1.7344120322737784}
INFO:root:{'test_acc': 0.8188848188848189, 'test_loss': 1.73456031979222}
The code for torch_fedavg_mnist_lr_one_line_example.py
is shown below:
import fedml
if __name__ == "__main__":
fedml.run_simulation()
As you can see, the main()
function is a single line of code that implements the training of a standalone simulation of federal learning.
You can view the output log files in the /log
directory under the current directory
In this section, we will present how to use FedML to implement a stand-alone simulated version of the FedAvg algorithm on the MNIST dataset by calling specific functions step by step in the code.
First we should also complete the step1 and step2 operations in the one line example, and then quickly implement the federation learning model training on the MNIST dataset with the following line of code for a single machine simulation.
python torch_fedavg_mnist_lr_step_by_step_example.py --cf fedml_config.yaml
The following steps are implemented in
torch_fedavg_mnist_lr_step_by_step_example.py
-
Init FedML framework : initialize FedML framework, get the parameter settings of each part(
args
) -
Init device: set the
device
to run according to the parameters related to device settings. -
Load data: load the dataset information(
dataset
) and the dimension of the task output (output_dim
)according to the parameters related to data. For example, the current dataset is a 10 classification task, so the dimension of the task output is 10. -
Load model: load the initialized
model
according to the parameters related to the model. -
Start training: initialize the standalone simulator object
Simulator(args, device, dataset, model)
withargs
,device
,dataset
,model
values, and then call run() on the object to start training.
In this section we will present how to customize the dataset and model using FedML based on the Step by step example
and implement a stand-alone simulated version of the FedAvg algorithm.
First we still need to complete the first two cases step1 and step2, and then we can quickly implement the federation learning model training on the MNIST dataset with the following line of code for stand-alone simulation:
python torch_fedavg_mnist_lr_custum_data_and_model_example.py --cf fedml_config.yaml
The torch_fedavg_mnist_lr_custum_data_and_model_example.py
defines the
load_data(args)
function for loading the dataset and related information, and the
LogisticRegression(torch.nn. Module)
class defines the LogisticRegression model. The specific code is as follows:
def load_data(args):
download_mnist(args.data_cache_dir)
fedml.logger.info("load_data. dataset_name = %s" % args.dataset)
"""
Please read through the data loader at to see how to customize the dataset for FedML framework.
"""
(
client_num,
train_data_num,
test_data_num,
train_data_global,
test_data_global,
train_data_local_num_dict,
train_data_local_dict,
test_data_local_dict,
class_num,
) = load_partition_data_mnist(
args.batch_size,
train_path=args.data_cache_dir + "MNIST/train",
test_path=args.data_cache_dir + "MNIST/test",
)
"""
For shallow NN or linear models,
we uniformly sample a fraction of clients each round (as the original FedAvg paper)
"""
args.client_num_in_total = client_num
dataset = [
train_data_num,
test_data_num,
train_data_global,
test_data_global,
train_data_local_num_dict,
train_data_local_dict,
test_data_local_dict,
class_num,
]
return dataset, class_num
class LogisticRegression(torch.nn.Module):
def __init__(self, input_dim, output_dim):
super(LogisticRegression, self).__init__()
self.linear = torch.nn.Linear(input_dim, output_dim)
def forward(self, x):
outputs = torch.sigmoid(self.linear(x))
return outputs
torch_fedavg_mnist_lr_custum_data_and_model_example.py
is similar to torch_fedavg_mnist_lr_step_by_step_example.py
, the code includes the same parts, though torch_fedavg_mnist_lr_custum_data_and_model_example.py
loads the dataset and the model definition part using custom function and class. The code for the training process is shown below:
if __name__ == "__main__":
# init FedML framework
args = fedml.init()
# init device
device = fedml.device.get_device(args)
# load data
dataset, output_dim = load_data(args)
# load model (the size of MNIST image is 28 x 28)
model = LogisticRegression(28 * 28, output_dim)
# start training
simulator = Simulator(args, device, dataset, model)
simulator.run()