Skip to content

[ICLR 2023] Equivariant Descriptor Fields: SE(3)-Equivariant Energy-Based Models for End-to-End Visual Robotic Manipulation Learning

License

Notifications You must be signed in to change notification settings

tomato1mule/edf

Repository files navigation

[ICLR 2023] Equivariant Descriptor Fields (EDFs)

Official PyTorch implementation of Equivariant Descriptor Fields: SE(3)-Equivariant Energy-Based Models for End-to-End Visual Robotic Manipulation Learning (ICLR 2023 Poster).

The paper can be found at: https://openreview.net/forum?id=dnjZSPGmY5O

Note
This is a standalone implementation of EDFs without PyBullet simulation environments. To reproduce our experimental results in the paper, please check the following branch: https://github.com/tomato1mule/edf/tree/iclr2023_rebuttal_ver

Installation

Step 1. Clone Github repository.

git clone https://github.com/tomato1mule/edf

Step 2. Setup Conda environment.

conda create -n edf python=3.8
conda activate edf

Step 3. Install Dependencies

CUDA=cu113
pip install torch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/${CUDA}
pip install torch-cluster==1.6.0 -f https://data.pyg.org/whl/torch-1.11.0+${CUDA}.html
pip install torch-scatter==2.0.9 -f https://data.pyg.org/whl/torch-1.11.0+${CUDA}.html
pip install iopath fvcore
pip install --no-index --no-cache-dir pytorch3d==0.7.2 -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py38_${CUDA}_pyt1110/download.html
pip install -e .

Usage

Train

python pick_train.py
python place_train.py

Evaluate

python evaluate_pick.py
python evaluate_place.py

About

[ICLR 2023] Equivariant Descriptor Fields: SE(3)-Equivariant Energy-Based Models for End-to-End Visual Robotic Manipulation Learning

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published