diff --git a/examples/nlp/abstractive_summarization_with_bart.py b/examples/nlp/abstractive_summarization_with_bart.py index f712383ee4..dfe97ddc3c 100644 --- a/examples/nlp/abstractive_summarization_with_bart.py +++ b/examples/nlp/abstractive_summarization_with_bart.py @@ -2,9 +2,10 @@ Title: Abstractive Text Summarization with BART Author: [Abheesht Sharma](https://github.com/abheesht17/) Date created: 2023/07/08 -Last modified: 2023/07/08 +Last modified: 2024/03/20 Description: Use KerasNLP to fine-tune BART on the abstractive summarization task. Accelerator: GPU +Converted to Keras 3 by: [Sitam Meur](https://github.com/sitamgithub-MSIT) """ """ @@ -42,8 +43,8 @@ """ """ -This examples uses [Keras Core](https://keras.io/keras_core/) to work in any of -`"tensorflow"`, `"jax"` or `"torch"`. Support for Keras Core is baked into +This examples uses [Keras 3](https://keras.io/keras_3/) to work in any of +`"tensorflow"`, `"jax"` or `"torch"`. Support for Keras 3 is baked into KerasNLP, simply change the `"KERAS_BACKEND"` environment variable to select the backend of your choice. We select the JAX backend below. """ @@ -60,11 +61,10 @@ import time import keras_nlp +import keras import tensorflow as tf import tensorflow_datasets as tfds -import keras_core as keras - """ Let's also define our hyperparameters. """ diff --git a/examples/nlp/ipynb/abstractive_summarization_with_bart.ipynb b/examples/nlp/ipynb/abstractive_summarization_with_bart.ipynb index 22feb911e9..1d6a6ecc27 100644 --- a/examples/nlp/ipynb/abstractive_summarization_with_bart.ipynb +++ b/examples/nlp/ipynb/abstractive_summarization_with_bart.ipynb @@ -10,7 +10,7 @@ "\n", "**Author:** [Abheesht Sharma](https://github.com/abheesht17/)
\n", "**Date created:** 2023/07/08
\n", - "**Last modified:** 2023/07/08
\n", + "**Last modified:** 2024/03/20
\n", "**Description:** Use KerasNLP to fine-tune BART on the abstractive summarization task." ] }, @@ -56,7 +56,7 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "colab_type": "code" }, @@ -71,15 +71,15 @@ "colab_type": "text" }, "source": [ - "This examples uses [Keras Core](https://keras.io/keras_core/) to work in any of\n", - "`\"tensorflow\"`, `\"jax\"` or `\"torch\"`. Support for Keras Core is baked into\n", + "This examples uses [Keras 3](https://keras.io/keras_3/) to work in any of\n", + "`\"tensorflow\"`, `\"jax\"` or `\"torch\"`. Support for Keras 3 is baked into\n", "KerasNLP, simply change the `\"KERAS_BACKEND\"` environment variable to select\n", "the backend of your choice. We select the JAX backend below." ] }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "colab_type": "code" }, @@ -101,7 +101,7 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "colab_type": "code" }, @@ -111,10 +111,9 @@ "import time\n", "\n", "import keras_nlp\n", + "import keras\n", "import tensorflow as tf\n", - "import tensorflow_datasets as tfds\n", - "\n", - "import keras_core as keras" + "import tensorflow_datasets as tfds" ] }, { @@ -128,7 +127,7 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "colab_type": "code" }, @@ -156,7 +155,7 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "colab_type": "code" }, @@ -187,7 +186,7 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "colab_type": "code" }, @@ -215,7 +214,7 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "colab_type": "code" }, @@ -255,7 +254,7 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "colab_type": "code" }, @@ -285,7 +284,7 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "colab_type": "code" }, @@ -322,7 +321,7 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "colab_type": "code" }, @@ -351,7 +350,7 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "colab_type": "code" }, @@ -399,7 +398,7 @@ }, { "cell_type": "code", - "execution_count": 0, + "execution_count": null, "metadata": { "colab_type": "code" }, @@ -454,4 +453,4 @@ }, "nbformat": 4, "nbformat_minor": 0 -} \ No newline at end of file +} diff --git a/examples/nlp/md/abstractive_summarization_with_bart.md b/examples/nlp/md/abstractive_summarization_with_bart.md index 06c1ea8018..d019cc7ec1 100644 --- a/examples/nlp/md/abstractive_summarization_with_bart.md +++ b/examples/nlp/md/abstractive_summarization_with_bart.md @@ -2,7 +2,7 @@ **Author:** [Abheesht Sharma](https://github.com/abheesht17/)
**Date created:** 2023/07/08
-**Last modified:** 2023/07/08
+**Last modified:** 2024/03/20
**Description:** Use KerasNLP to fine-tune BART on the abstractive summarization task. @@ -59,8 +59,8 @@ couple of utility libraries. ``` -This examples uses [Keras Core](https://keras.io/keras_core/) to work in any of -`"tensorflow"`, `"jax"` or `"torch"`. Support for Keras Core is baked into +This examples uses [Keras 3](https://keras.io/keras_3) to work in any of +`"tensorflow"`, `"jax"` or `"torch"`. Support for Keras 3 is baked into KerasNLP, simply change the `"KERAS_BACKEND"` environment variable to select the backend of your choice. We select the JAX backend below. @@ -79,10 +79,9 @@ import py7zr import time import keras_nlp +import keras import tensorflow as tf import tensorflow_datasets as tfds - -import keras_core as keras ```