forked from vlachoudis/bCNC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimageToGcode.py
1203 lines (1025 loc) · 31.2 KB
/
imageToGcode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/python
## image-to-gcode is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by the
## Free Software Foundation; either version 2 of the License, or (at your
## option) any later version. image-to-gcode is distributed in the hope
## that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
## warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
## the GNU General Public License for more details. You should have
## received a copy of the GNU General Public License along with image-to-gcode;
## if not, write to the Free Software Foundation, Inc., 59 Temple Place,
## Suite 330, Boston, MA 02111-1307 USA
##
## image-to-gcode.py is Copyright (C) 2005 Chris Radek
## chris@timeguy.com
## image-to-gcode.py is Copyright (C) 2006 Jeff Epler
## jepler@unpy.net
#################################################################################
# image-to-gcode #
#################################################################################
import math
import sys
import operator
epsilon = 1e-5
MAXINT = 1000000000
def ball_tool(r,rad):
s = -math.sqrt(rad**2-r**2)
return s
def endmill(r,dia, rough_offset=0.0):
return 0
def vee_common(angle, rough_offset=0.0):
slope = math.tan(math.pi/2.0 - (angle / 2.0) * math.pi / 180.0)
def f(r, dia):
return r * slope
return f
def make_tool_shape(NUMPY,f, wdia, resp, rough_offset=0.0):
# resp is pixel size
res = 1. / resp
wrad = wdia/2.0 + rough_offset
rad = int(math.ceil((wrad-resp/2.0)*res))
if rad < 1: rad = 1
dia = 2*rad+1
hdia = rad
l = []
for x in range(dia):
for y in range(dia):
r = math.hypot(x-hdia, y-hdia) * resp
if r < wrad:
z = f(r, wrad)
l.append(z)
if NUMPY == True:
Image_Matrix = Image_Matrix_Numpy
else:
Image_Matrix = Image_Matrix_List
TOOL = Image_Matrix(dia,dia)
l = []
temp = []
for x in range(dia):
temp.append([])
for y in range(dia):
r = math.hypot(x-hdia, y-hdia) * resp
if r < wrad:
z = f(r, wrad)
l.append(z)
temp[x].append(float(z))
else:
temp[x].append(1e100000)
TOOL.From_List(temp)
TOOL.minus(TOOL.min()+rough_offset)
return TOOL
def amax(seq):
res = 0
for i in seq:
if abs(i) > abs(res): res = i
return res
def group_by_sign(seq, slop=math.sin(math.pi/18), key=lambda x:x):
sign = None
subseq = []
for i in seq:
ki = key(i)
if sign is None:
subseq.append(i)
if ki != 0:
sign = ki / abs(ki)
else:
subseq.append(i)
if sign * ki < -slop:
sign = ki / abs(ki)
yield subseq
subseq = [i]
if subseq: yield subseq
class Convert_Scan_Alternating:
def __init__(self):
self.st = 0
def __call__(self, primary, items):
st = self.st = self.st + 1
if st % 2: items.reverse()
if st == 1: yield True, items
else: yield False, items
def reset(self):
self.st = 0
class Convert_Scan_Increasing:
def __call__(self, primary, items):
yield True, items
def reset(self):
pass
class Convert_Scan_Decreasing:
def __call__(self, primary, items):
items.reverse()
yield True, items
def reset(self):
pass
class Convert_Scan_Upmill:
def __init__(self, slop = math.sin(math.pi / 18)):
self.slop = slop
def __call__(self, primary, items):
for span in group_by_sign(items, self.slop, operator.itemgetter(2)):
if amax([it[2] for it in span]) < 0:
span.reverse()
yield True, span
def reset(self):
pass
class Convert_Scan_Downmill:
def __init__(self, slop = math.sin(math.pi / 18)):
self.slop = slop
def __call__(self, primary, items):
for span in group_by_sign(items, self.slop, operator.itemgetter(2)):
if amax([it[2] for it in span]) > 0:
span.reverse()
yield True, span
def reset(self):
pass
class Reduce_Scan_Lace:
def __init__(self, converter, slope, keep):
self.converter = converter
self.slope = slope
self.keep = keep
def __call__(self, primary, items):
slope = self.slope
keep = self.keep
if primary:
idx = 3
test = operator.le
else:
idx = 2
test = operator.ge
def bos(j):
return j - j % keep
def eos(j):
if j % keep == 0: return j
return j + keep - j%keep
for i, (flag, span) in enumerate(self.converter(primary, items)):
subspan = []
a = None
for i, si in enumerate(span):
ki = si[idx]
if a is None:
if test(abs(ki), slope):
a = b = i
else:
if test(abs(ki), slope):
b = i
else:
if i - b < keep: continue
yield True, span[bos(a):eos(b+1)]
a = None
if a is not None:
yield True, span[a:]
def reset(self):
self.converter.reset()
#############
class Reduce_Scan_Lace_new:
def __init__(self, converter, depth, keep):
self.converter = converter
self.depth = depth
self.keep = keep
def __call__(self, primary, items):
keep = self.keep
max_z_cut = self.depth # set a max z value to cut
def bos(j):
return j - j % keep
def eos(j):
if j % keep == 0: return j
return j + keep - j%keep
for i, (flag, span) in enumerate(self.converter(primary, items)):
subspan = []
a = None
for i, si in enumerate(span):
ki = si[1] # This is (x,y,z)
z_value = ki[2] # Get the z value from ki
if a is None:
if z_value < max_z_cut:
a = b = i
else:
if z_value < max_z_cut:
b = i
else:
if i - b < keep: continue
yield True, span[bos(a):eos(b+1)]
a = None
if a is not None:
yield True, span[a:]
def reset(self):
self.converter.reset()
#############
class Converter:
def __init__(self, BIG, \
image, units, tool_shape, pixelsize, pixelstep, safetyheight, tolerance,\
feed, convert_rows, convert_cols, cols_first_flag, border, entry_cut,\
roughing_delta, roughing_feed, xoffset, yoffset, splitstep, header, \
postscript, edge_offset, disable_arcs):
self.BIG = BIG
self.image = image
self.units = units
self.tool_shape = tool_shape
self.pixelsize = pixelsize
self.safetyheight = safetyheight
self.tolerance = tolerance
self.base_feed = feed
self.convert_rows = convert_rows
self.convert_cols = convert_cols
self.cols_first_flag = cols_first_flag
self.entry_cut = entry_cut
self.roughing_delta = roughing_delta
self.roughing_feed = roughing_feed
self.header = header
self.postscript = postscript
self.border = border
self.edge_offset = edge_offset
self.disable_arcs = disable_arcs
self.xoffset = xoffset
self.yoffset = yoffset
# Split step stuff
splitpixels = 0
if splitstep > epsilon:
pixelstep = int(math.floor(pixelstep * splitstep * 2))
splitpixels = int(math.floor(pixelstep * splitstep ))
self.pixelstep = pixelstep
self.splitpixels = splitpixels
self.cache = {}
w, h = self.w, self.h = image.shape
self.h1 = h
self.w1 = w
###
row_cnt=0
cnt_border = 0
if self.convert_rows != None:
row_cnt = math.ceil( self.w1 / pixelstep) + 2
col_cnt = 0
if self.convert_cols != None:
col_cnt = math.ceil( self.h1 / pixelstep) + 2
if self.roughing_delta != 0:
cnt_mult = math.ceil(self.image.min() / -self.roughing_delta) + 1
else:
cnt_mult = 1
if self.convert_cols != None or self.convert_rows != None:
cnt_border = 2
self.cnt_total = (row_cnt + col_cnt + cnt_border )* cnt_mult
self.cnt = 0.0
def one_pass(self):
g = self.g
g.set_feed(self.feed)
if self.convert_cols and self.cols_first_flag:
self.g.set_plane(19)
self.mill_cols(self.convert_cols, True)
if self.convert_rows: g.safety()
if self.convert_rows:
self.g.set_plane(18)
self.mill_rows(self.convert_rows, not self.cols_first_flag)
if self.convert_cols and not self.cols_first_flag:
self.g.set_plane(19)
if self.convert_rows: g.safety()
self.mill_cols(self.convert_cols, not self.convert_rows)
g.safety()
## mill border ##
if self.convert_cols:
self.convert_cols.reset()
if self.convert_rows:
self.convert_rows.reset()
step_save = self.pixelstep
self.pixelstep = max(self.w1, self.h1) + 1
if self.border == 1 and not self.convert_rows:
if self.convert_cols:
self.g.set_plane(18)
self.mill_rows(self.convert_cols, True)
g.safety()
if self.border == 1 and not self.convert_cols:
if self.convert_rows:
self.g.set_plane(19)
self.mill_cols(self.convert_rows, True)
g.safety()
self.pixelstep = step_save
if self.convert_cols:
self.convert_cols.reset()
if self.convert_rows:
self.convert_rows.reset()
g.safety()
def convert(self):
output_gcode = []
self.g = g = Gcode(safetyheight=self.safetyheight,
tolerance=self.tolerance,
units=self.units,
header=self.header,
postscript=self.postscript,
target=lambda s: output_gcode.append(s),
disable_arcs = self.disable_arcs)
g.begin()
#g.continuous(self.tolerance) #commented V0.7
g.safety()
if self.roughing_delta:
##########################################
self.feed = self.roughing_feed
r = -self.roughing_delta
m = self.image.min()
while r > m:
self.rd = r
self.one_pass()
r = r - self.roughing_delta
if r < m + epsilon:
self.rd = m
self.one_pass()
##########################################
else:
self.feed = self.base_feed
self.rd = self.image.min()
self.one_pass()
##########################################
g.end()
return output_gcode
def get_z(self, x, y):
try:
return min(0, max(self.rd, self.cache[x,y]))
except KeyError:
self.cache[x,y] = d = self.image.height_calc(x,y,self.tool_shape)
return min(0.0, max(self.rd, d))
def get_dz_dy(self, x, y):
y1 = max(0, y-1)
y2 = min(self.image.shape[0]-1, y+1)
dy = self.pixelsize * (y2-y1)
return (self.get_z(x, y2) - self.get_z(x, y1)) / dy
def get_dz_dx(self, x, y):
x1 = max(0, x-1)
x2 = min(self.image.shape[1]-1, x+1)
dx = self.pixelsize * (x2-x1)
return (self.get_z(x2, y) - self.get_z(x1, y)) / dx
def frange(self,start, stop, step):
out = []
i = start
while i < stop:
out.append(i)
i += step
return out
def mill_rows(self, convert_scan, primary):
global STOP_CALC
w1 = self.w1
h1 = self.h1
pixelsize = self.pixelsize
pixelstep = self.pixelstep
pixel_offset = int(math.ceil(self.edge_offset / pixelsize))
jrange = self.frange(self.splitpixels+pixel_offset, w1-pixel_offset, pixelstep)
if jrange[0] != pixel_offset: jrange.insert(0,pixel_offset)
if w1-1-pixel_offset not in jrange: jrange.append(w1-1-pixel_offset)
irange = range(pixel_offset,h1-pixel_offset)
for j in jrange:
self.cnt = self.cnt+1
#progress(self.cnt, self.cnt_total, self.START_TIME, self.BIG )
y = (w1-j-1) * pixelsize + self.yoffset
scan = []
for i in irange:
self.BIG.update()
#if STOP_CALC: return
x = i * pixelsize + self.xoffset
milldata = (i, (x, y, self.get_z(i, j)),
self.get_dz_dx(i, j), self.get_dz_dy(i, j))
scan.append(milldata)
for flag, points in convert_scan(primary, scan):
if flag:
self.entry_cut(self, points[0][0], j, points)
for p in points:
self.g.cut(*p[1])
self.g.flush()
def mill_cols(self, convert_scan, primary):
global STOP_CALC
w1 = self.w1
h1 = self.h1
pixelsize = self.pixelsize
pixelstep = self.pixelstep
pixel_offset = int(math.ceil(self.edge_offset / pixelsize))
jrange = self.frange(self.splitpixels+pixel_offset, h1-pixel_offset, pixelstep)
if jrange[0] != pixel_offset: jrange.insert(0,pixel_offset)
if h1-1-pixel_offset not in jrange: jrange.append(h1-1-pixel_offset)
irange = range(pixel_offset,w1-pixel_offset)
if h1-1-pixel_offset not in jrange: jrange.append(h1-1-pixel_offset)
jrange.reverse()
for j in jrange:
self.cnt = self.cnt+1
#progress(self.cnt, self.cnt_total, self.START_TIME, self.BIG )
x = j * pixelsize + self.xoffset
scan = []
for i in irange:
self.BIG.update()
#if STOP_CALC: return
y = (w1-i-1) * pixelsize + self.yoffset
milldata = (i, (x, y, self.get_z(j, i)),
self.get_dz_dy(j, i), self.get_dz_dx(j, i))
scan.append(milldata)
for flag, points in convert_scan(primary, scan):
if flag:
self.entry_cut(self, j, points[0][0], points)
for p in points:
self.g.cut(*p[1])
self.g.flush()
def convert(*args, **kw):
return Converter(*args, **kw).convert()
class SimpleEntryCut:
def __init__(self, feed):
self.feed = feed
def __call__(self, conv, i0, j0, points):
p = points[0][1]
if self.feed:
conv.g.set_feed(self.feed)
conv.g.safety()
conv.g.rapid(p[0], p[1])
if self.feed:
conv.g.set_feed(conv.feed)
# Calculate the portion of the arc to do so that none is above the
# safety height (that's just silly)
def circ(r,b):
z = r**2 - (r-b)**2
if z < 0: z = 0
return z**.5
class ArcEntryCut:
def __init__(self, feed, max_radius):
self.feed = feed
self.max_radius = max_radius
def __call__(self, conv, i0, j0, points):
if len(points) < 2:
p = points[0][1]
if self.feed:
conv.g.set_feed(self.feed)
conv.g.safety()
conv.g.rapid(p[0], p[1])
if self.feed:
conv.g.set_feed(conv.feed)
return
p1 = points[0][1]
p2 = points[1][1]
z0 = p1[2]
lim = int(math.ceil(self.max_radius / conv.pixelsize))
r = range(1, lim)
if self.feed:
conv.g.set_feed(self.feed)
conv.g.safety()
x, y, z = p1
pixelsize = conv.pixelsize
cx = cmp(p1[0], p2[0])
cy = cmp(p1[1], p2[1])
radius = self.max_radius
if cx != 0:
h1 = conv.h1
for di in r:
dx = di * pixelsize
i = i0 + cx * di
if i < 0 or i >= h1: break
z1 = conv.get_z(i, j0)
dz = (z1 - z0)
if dz <= 0: continue
if dz > dx:
conv.g.write("(case 1)")
radius = dx
break
rad1 = (dx * dx / dz + dz) / 2
if rad1 < radius:
radius = rad1
if dx > radius:
break
z1 = min(p1[2] + radius, conv.safetyheight)
x1 = p1[0] + cx * circ(radius, z1 - p1[2])
conv.g.rapid(x1, p1[1])
conv.g.cut(z=z1)
I = - cx * circ(radius, z1 - p1[2])
K = (p1[2] + radius) - z1
conv.g.flush(); conv.g.lastgcode = None
if cx > 0:
#conv.g.write("G3 X%f Z%f R%f" % (p1[0], p1[2], radius)) #G3
conv.g.write("G3 X%f Z%f I%f K%f" % (p1[0], p1[2], I, K))
else:
#conv.g.write("G2 X%f Z%f R%f" % (p1[0], p1[2], radius)) #G2
conv.g.write("G2 X%f Z%f I%f K%f" % (p1[0], p1[2], I, K))
conv.g.lastx = p1[0]
conv.g.lasty = p1[1]
conv.g.lastz = p1[2]
else:
w1 = conv.w1
for dj in r:
dy = dj * pixelsize
j = j0 - cy * dj
if j < 0 or j >= w1: break
z1 = conv.get_z(i0, j)
dz = (z1 - z0)
if dz <= 0: continue
if dz > dy:
radius = dy
break
rad1 = (dy * dy / dz + dz) / 2
if rad1 < radius: radius = rad1
if dy > radius: break
z1 = min(p1[2] + radius, conv.safetyheight)
y1 = p1[1] + cy * circ(radius, z1 - p1[2])
conv.g.rapid(p1[0], y1)
conv.g.cut(z=z1)
J = -cy * circ(radius, z1 - p1[2])
K = (p1[2] + radius) - z1
conv.g.flush(); conv.g.lastgcode = None
if cy > 0:
#conv.g.write("G2 Y%f Z%f R%f" % (p1[1], p1[2], radius)) #G2
conv.g.write("G2 Y%f Z%f J%f K%f" % (p1[1], p1[2], J, K))
else:
#conv.g.write("G3 Y%f Z%f R%f" % (p1[1], p1[2], radius)) #G3
conv.g.write("G3 Y%f Z%f J%f K%f" % (p1[1], p1[2], J, K))
conv.g.lastx = p1[0]
conv.g.lasty = p1[1]
conv.g.lastz = p1[2]
if self.feed:
conv.g.set_feed(conv.feed)
class Image_Matrix_List: #Nested list (no Numpy)
def __init__(self, width=0, height=0):
self.width = width
self.height = height
self.matrix = []
self.shape = [width, height]
def __call__(self,i,j):
return self.matrix[i][j]
def Assign(self,i,j,val):
self.matrix[i][j] = float(val)
def From_List(self,input_list):
s = len(input_list)
self.width = s
self.height = s
for x in range(s):
self.api()
for y in range(s):
self.apj(x,float(input_list[x][y]))
def FromImage(self, im, pil_format):
global STOP_CALC
self.matrix = []
if pil_format:
him,wim = im.size
for i in range(0,wim):
self.api()
for j in range(0,him):
pix = im.getpixel((j,i))
self.apj(i,pix)
else:
him = im.width()
wim = im.height()
for i in range(0,wim):
self.api()
for j in range(0,him):
try: pix = im.get(j,i).split()
except: pix = im.get(j,i)
self.apj(i,pix[0])
self.width = wim
self.height = him
self.shape = [wim, him]
self.t_offset = 0
def pad_w_zeros(self,tool):
ts = tool.width
for i in range(len(self.matrix),self.width+ts):
self.api()
for i in range(0,len(self.matrix)):
for j in range(len(self.matrix[i]),self.height+ts):
self.apj(i,-1e1000000)
def height_calc(self,x,y,tool):
ts = tool.width
d = -1e1000000
ilow = (int)(x-(ts-1)/2)
ihigh = (int)(x+(ts-1)/2+1)
jlow = (int)(y-(ts-1)/2)
jhigh = (int)(y+(ts-1)/2+1)
icnt = 0
for i in range( ilow , ihigh):
jcnt = 0
for j in range( jlow , jhigh):
d = max( d, self(j,i) - tool(jcnt,icnt))
jcnt = jcnt+1
icnt = icnt+1
return d
def min(self):
minval = 1e1000000
for i in range(0,self.width):
for j in range(0,self.height):
minval = min(minval,self.matrix[i][j])
return minval
def max(self):
maxval = -1e1000000
for i in range(0,self.width):
for j in range(0,self.height):
maxval = max(maxval,self.matrix[i][j])
return maxval
def api(self):
self.matrix.append([])
def apj(self,i,val):
fval = float(val)
self.matrix[i].append(fval)
def mult(self,val):
fval = float(val)
icnt=0
for i in self.matrix:
jcnt = 0
for j in i:
self.matrix[icnt][jcnt] = fval * j
jcnt = jcnt + 1
icnt=icnt+1
def minus(self,val):
fval = float(val)
icnt=0
for i in self.matrix:
jcnt = 0
for j in i:
self.matrix[icnt][jcnt] = j - fval
jcnt = jcnt + 1
icnt=icnt+1
class Image_Matrix_Numpy:
def __init__(self, width=2, height=2):
import numpy
self.width = width
self.height = height
self.matrix = numpy.zeros((width, height), 'Float32')
self.shape = [width, height]
self.t_offset = 0
def __call__(self,i,j):
return self.matrix[i+self.t_offset,j+self.t_offset]
def Assign(self,i,j,val):
fval=float(val)
self.matrix[i+self.t_offset,j+self.t_offset]=fval
def From_List(self,input_list):
import numpy
s = len(input_list)
self.width = s
self.height = s
self.matrix = numpy.zeros((s, s), 'Float32')
for x in range(s):
for y in range(s):
self.matrix[x,y]=float(input_list[x][y])
def FromImage(self, im, pil_format):
import numpy
global STOP_CALC
self.matrix = []
if pil_format:
him,wim = im.size
self.matrix = numpy.zeros((wim, him), 'Float32')
for i in range(0,wim):
for j in range(0,him):
pix = im.getpixel((j,i))
self.matrix[i,j] = float(pix)
else:
him = im.width()
wim = im.height()
self.matrix = numpy.zeros((wim, him), 'Float32')
for i in range(0,wim):
for j in range(0,him):
try: pix = im.get(j,i).split()
except: pix = im.get(j,i)
self.matrix[i,j] = float(pix[0])
self.width = wim
self.height = him
self.shape = [wim, him]
self.t_offset = 0
def pad_w_zeros(self,tool):
import numpy
ts = tool.width
self.t_offset = (ts-1)/2
to = self.t_offset
w, h = self.shape
w1 = w + ts-1
h1 = h + ts-1
temp = numpy.zeros((w1, h1), 'Float32')
for j in range(0, w1):
for i in range(0, h1):
temp[j,i] = -1e1000000
temp[to:to+w, to:to+h] = self.matrix
self.matrix = temp
def height_calc(self,x,y,tool):
to = self.t_offset
ts = tool.width
d= -1e100000
m1 = self.matrix[y:y+ts, x:x+ts]
d = (m1 - tool.matrix).max()
return d
def min(self):
return self.matrix[self.t_offset:self.t_offset+self.width,
self.t_offset:self.t_offset+self.height].min()
def max(self):
return self.matrix[self.t_offset:self.t_offset+self.width,
self.t_offset:self.t_offset+self.height].max()
def mult(self,val):
self.matrix = self.matrix * float(val)
def minus(self,val):
self.matrix = self.matrix - float(val)
################################################################################
# Author.py #
# A component of emc2 #
################################################################################
# Compute the 3D distance from the line segment l1..l2 to the point p.
# (Those are lower case L1 and L2)
def dist_lseg(l1, l2, p):
x0, y0, z0 = l1
xa, ya, za = l2
xi, yi, zi = p
dx = xa-x0
dy = ya-y0
dz = za-z0
d2 = dx*dx + dy*dy + dz*dz
if d2 == 0: return 0
t = (dx * (xi-x0) + dy * (yi-y0) + dz * (zi-z0)) / d2
if t < 0: t = 0
if t > 1: t = 1
dist2 = (xi - x0 - t*dx)**2 + (yi - y0 - t*dy)**2 + (zi - z0 - t*dz)**2
return dist2 ** .5
def rad1(x1,y1,x2,y2,x3,y3):
x12 = x1-x2
y12 = y1-y2
x23 = x2-x3
y23 = y2-y3
x31 = x3-x1
y31 = y3-y1
den = abs(x12 * y23 - x23 * y12)
if abs(den) < 1e-5: return MAXINT
return math.hypot(float(x12), float(y12)) * math.hypot(float(x23), float(y23)) * math.hypot(float(x31), float(y31)) / 2 / den
class Point:
def __init__(self, x, y):
self.x = x
self.y = y
def __str__(self): return "<%f,%f>" % (self.x, self.y)
def __sub__(self, other):
return Point(self.x - other.x, self.y - other.y)
def __add__(self, other):
return Point(self.x + other.x, self.y + other.y)
def __mul__(self, other):
return Point(self.x * other, self.y * other)
__rmul__ = __mul__
def cross(self, other):
return self.x * other.y - self.y * other.x
def dot(self, other):
return self.x * other.x + self.y * other.y
def mag(self):
return math.hypot(self.x, self.y)
def mag2(self):
return self.x**2 + self.y**2
def cent1(x1,y1,x2,y2,x3,y3):
P1 = Point(x1,y1)
P2 = Point(x2,y2)
P3 = Point(x3,y3)
den = abs((P1-P2).cross(P2-P3))
if abs(den) < 1e-5: return MAXINT, MAXINT
alpha = (P2-P3).mag2() * (P1-P2).dot(P1-P3) / 2 / den / den
beta = (P1-P3).mag2() * (P2-P1).dot(P2-P3) / 2 / den / den
gamma = (P1-P2).mag2() * (P3-P1).dot(P3-P2) / 2 / den / den
Pc = alpha * P1 + beta * P2 + gamma * P3
return Pc.x, Pc.y
def arc_center(plane, p1, p2, p3):
x1, y1, z1 = p1
x2, y2, z2 = p2
x3, y3, z3 = p3
if plane == 17: return cent1(x1,y1,x2,y2,x3,y3)
if plane == 18: return cent1(x1,z1,x2,z2,x3,z3)
if plane == 19: return cent1(y1,z1,y2,z2,y3,z3)
def arc_rad(plane, P1, P2, P3):
if plane is None: return MAXINT
x1, y1, z1 = P1
x2, y2, z2 = P2
x3, y3, z3 = P3
if plane == 17: return rad1(x1,y1,x2,y2,x3,y3)
if plane == 18: return rad1(x1,z1,x2,z2,x3,z3)
if plane == 19: return rad1(y1,z1,y2,z2,y3,z3)
return None, 0
def get_pts(plane, x,y,z):
if plane == 17: return x,y
if plane == 18: return x,z
if plane == 19: return y,z
def one_quadrant(plane, c, p1, p2, p3):
xc, yc = c
x1, y1 = get_pts(plane, p1[0],p1[1],p1[2])
x2, y2 = get_pts(plane, p2[0],p2[1],p2[2])
x3, y3 = get_pts(plane, p3[0],p3[1],p3[2])
def sign(x):
if abs(x) < 1e-5: return 0
if x < 0: return -1
return 1
signs = set((
(sign(x1-xc),sign(y1-yc)),
(sign(x2-xc),sign(y2-yc)),
(sign(x3-xc),sign(y3-yc))
))
if len(signs) == 1: return True
if (1,1) in signs:
signs.discard((1,0))
signs.discard((0,1))
if (1,-1) in signs:
signs.discard((1,0))
signs.discard((0,-1))
if (-1,1) in signs:
signs.discard((-1,0))
signs.discard((0,1))
if (-1,-1) in signs:
signs.discard((-1,0))
signs.discard((0,-1))
if len(signs) == 1: return True
def arc_dir(plane, c, p1, p2, p3):
xc, yc = c
x1, y1 = get_pts(plane, p1[0],p1[1],p1[2])
x2, y2 = get_pts(plane, p2[0],p2[1],p2[2])
x3, y3 = get_pts(plane, p3[0],p3[1],p3[2])
theta_start = math.atan2(y1-yc, x1-xc)
theta_mid = math.atan2(y2-yc, x2-xc)
theta_end = math.atan2(y3-yc, x3-xc)
if theta_mid < theta_start:
theta_mid = theta_mid + 2 * math.pi
while theta_end < theta_mid:
theta_end = theta_end + 2 * math.pi
return theta_end < 2 * math.pi
def arc_fmt(plane, c1, c2, p1):
x, y, z = p1
if plane == 17: return "I%.4f J%.4f" % (c1-x, c2-y)
if plane == 18: return "I%.4f K%.4f" % (c1-x, c2-z)
if plane == 19: return "J%.4f K%.4f" % (c1-y, c2-z)
# Perform Douglas-Peucker simplification on the path 'st' with the specified
# tolerance. The '_first' argument is for internal use only.
#
# The Douglas-Peucker simplification algorithm finds a subset of the input points
# whose path is never more than 'tolerance' away from the original input path.
#
# If 'plane' is specified as 17, 18, or 19, it may find helical arcs in the given
# plane in addition to lines. Note that if there is movement in the plane
# perpendicular to the arc, it will be distorted, so 'plane' should usually
# be specified only when there is only movement on 2 axes
def douglas(st, tolerance=.001, plane=None, _first=True):
if len(st) == 1:
yield "G1", st[0], None
return
l1 = st[0]
l2 = st[-1]