-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathcolour_object_tracking.py
239 lines (153 loc) · 7.97 KB
/
colour_object_tracking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#####################################################################
# Example : mean shift object tracking processing from a video file
# specified on the command line (e.g. python FILE.py video_file) or from an
# attached web camera
# N.B. use mouse to select region
# Author : Toby Breckon, toby.breckon@durham.ac.uk
# Copyright (c) 2015 Toby Breckon
# Durham University, UK
# License : LGPL - http://www.gnu.org/licenses/lgpl.html
# based in part on tutorial at:
# http://docs.opencv.org/master/db/df8/tutorial_py_meanshift.html#gsc.tab=0
#####################################################################
import cv2
import sys
import math
import numpy as np
#####################################################################
keep_processing = True;
camera_to_use = 0; # 0 if you have one camera, 1 or > 1 otherwise
selection_in_progress = False; # support interactive region selection
#####################################################################
# select a region using the mouse
boxes = [];
current_mouse_position = np.ones(2, dtype=np.int32);
def on_mouse(event, x, y, flags, params):
global boxes;
global selection_in_progress;
current_mouse_position[0] = x;
current_mouse_position[1] = y;
if event == cv2.EVENT_LBUTTONDOWN:
boxes = [];
# print 'Start Mouse Position: '+str(x)+', '+str(y)
sbox = [x, y];
selection_in_progress = True;
boxes.append(sbox);
elif event == cv2.EVENT_LBUTTONUP:
# print 'End Mouse Position: '+str(x)+', '+str(y)
ebox = [x, y];
selection_in_progress = False;
boxes.append(ebox);
#####################################################################
# this function is called as a call-back everytime the trackbar is moved
# (here we just do nothing)
def nothing(x):
pass
#####################################################################
# define video capture object
cap = cv2.VideoCapture();
# define display window name
windowName = "Live Camera Input"; # window name
windowName2 = "Hue histogram back projection"; # window name
windowNameSelection = "selected";
# if command line arguments are provided try to read video_name
# otherwise default to capture from attached H/W camera
if (((len(sys.argv) == 2) and (cap.open(str(sys.argv[1]))))
or (cap.open(camera_to_use))):
# create window by name (note flags for resizable or not)
cv2.namedWindow(windowName, cv2.WINDOW_NORMAL);
cv2.namedWindow(windowName2, cv2.WINDOW_NORMAL);
cv2.namedWindow(windowNameSelection, cv2.WINDOW_NORMAL);
# set sliders for HSV selection thresholds
s_lower = 60;
cv2.createTrackbar("s lower", windowName2, s_lower, 255, nothing);
s_upper = 255;
cv2.createTrackbar("s upper", windowName2, s_upper, 255, nothing);
v_lower = 32;
cv2.createTrackbar("v lower", windowName2, v_lower, 255, nothing);
v_upper = 255;
cv2.createTrackbar("v upper", windowName2, v_upper, 255, nothing);
# set a mouse callback
cv2.setMouseCallback(windowName, on_mouse, 0);
cropped = False;
# Setup the termination criteria for search, either 10 iteration or
# move by at least 1 pixel pos. difference
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
while (keep_processing):
# if video file successfully open then read frame from video
if (cap.isOpened):
ret, frame = cap.read();
# start a timer (to see how long processing and display takes)
start_t = cv2.getTickCount();
# get parameters from track bars
s_lower = cv2.getTrackbarPos("s lower", windowName2);
s_upper = cv2.getTrackbarPos("s upper", windowName2);
v_lower = cv2.getTrackbarPos("v lower", windowName2);
v_upper = cv2.getTrackbarPos("v upper", windowName2);
# select region using the mouse and display it
if (len(boxes) > 1) and (boxes[0][1] < boxes[1][1]) and (boxes[0][0] < boxes[1][0]):
crop = frame[boxes[0][1]:boxes[1][1],boxes[0][0]:boxes[1][0]].copy()
h, w, c = crop.shape; # size of template
if (h > 0) and (w > 0):
cropped = True;
# convert region to HSV
hsv_crop = cv2.cvtColor(crop, cv2.COLOR_BGR2HSV);
# select all Hue (0-> 180) and Sat. values but eliminate values with very low
# saturation or value (due to lack of useful colour information)
mask = cv2.inRange(hsv_crop, np.array((0., float(s_lower),float(v_lower))), np.array((180.,float(s_upper),float(v_upper))));
# mask = cv2.inRange(hsv_crop, np.array((0., 60.,32.)), np.array((180.,255.,255.)));
# construct a histogram of hue and saturation values and normalize it
crop_hist = cv2.calcHist([hsv_crop],[0, 1],mask,[180, 255],[0,180, 0, 255]);
cv2.normalize(crop_hist,crop_hist,0,255,cv2.NORM_MINMAX);
# set intial position of object
track_window = (boxes[0][0],boxes[0][1],boxes[1][0] - boxes[0][0],boxes[1][1] - boxes[0][1]);
cv2.imshow(windowNameSelection,crop);
# reset list of boxes
boxes = [];
# interactive display of selection box
if (selection_in_progress):
top_left = (boxes[0][0], boxes[0][1]);
bottom_right = (current_mouse_position[0], current_mouse_position[1]);
cv2.rectangle(frame,top_left, bottom_right, (0,255,0), 2);
# if we have a selected region
if (cropped):
# convert incoming image to HSV
img_hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV);
img_bproject = cv2.calcBackProject([img_hsv],[0,1],crop_hist,[0,180,0,255],1);
cv2.imshow(windowName2,img_bproject);
# apply meanshift to get the new location
#ret, track_window = cv2.CamShift(img_bproject, track_window, term_crit);
ret, track_window = cv2.meanShift(img_bproject, track_window, term_crit);
# Draw it on image
x,y,w,h = track_window;
frame = cv2.rectangle(frame, (x,y), (x+w,y+h), (255,0,0),2);
else:
# before we have cropped anything show the mask we are using
# for the S and V components of the HSV image
img_hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV);
# select all Hue values (0-> 180) but eliminate values with very low
# saturation or value (due to lack of useful colour information)
mask = cv2.inRange(img_hsv, np.array((0., float(s_lower),float(v_lower))), np.array((180.,float(s_upper),float(v_upper))));
cv2.imshow(windowName2,mask);
# display image
cv2.imshow(windowName,frame);
# stop the timer and convert to ms. (to see how long processing and display takes)
stop_t = ((cv2.getTickCount() - start_t)/cv2.getTickFrequency()) * 1000;
# start the event loop - essential
# cv2.waitKey() is a keyboard binding function (argument is the time in milliseconds).
# It waits for specified milliseconds for any keyboard event.
# If you press any key in that time, the program continues.
# If 0 is passed, it waits indefinitely for a key stroke.
# (bitwise and with 0xFF to extract least significant byte of multi-byte response)
# here we use a wait time in ms. that takes account of processing time already used in the loop
# wait 40ms or less depending on processing time taken (i.e. 1000ms / 25 fps = 40 ms)
key = cv2.waitKey(max(2, 40 - int(math.ceil(stop_t)))) & 0xFF;
# It can also be set to detect specific key strokes by recording which key is pressed
# e.g. if user presses "x" then exit
if (key == ord('x')):
keep_processing = False;
# close all windows
cv2.destroyAllWindows()
else:
print("No video file specified or camera connected.")
#####################################################################