forked from siphomateke/PyBOW
-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathsliding_window.py
130 lines (99 loc) · 4.59 KB
/
sliding_window.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
################################################################################
# functionality: functions for multi-scale sliding window (exhaustive) search
# This version: (c) 2018 Toby Breckon, Dept. Computer Science, Durham University, UK
# License: MIT License
# Origin acknowledgements: forked from https://github.com/siphomateke/PyBOW
################################################################################
import numpy as np
import cv2
################################################################################
# re-size an image with respect to its aspect ratio if needed.
# used in the multi-scale image pyramid approach
def resize_img(img, width=-1, height=-1):
if height == -1 and width == -1:
raise TypeError("Invalid arguments. Width or height must be provided.")
h = img.shape[0]
w = img.shape[1]
if height == -1:
aspect_ratio = float(w) / h
new_height = int(width / aspect_ratio)
return cv2.resize(img, (width, new_height))
elif width == -1:
aspect_ratio = h / float(w)
new_width = int(height / aspect_ratio)
return cv2.resize(img, (new_width, height))
################################################################################
# a very basic approach to produce an image at multi-scales (i.e. variant
# re-sized resolutions)
def pyramid(img, scale=1.5, min_size=(30, 30)):
# yield the original image
yield img
# keep looping over the pyramid
while True:
# compute the new dimensions of the image and resize it
w = int(img.shape[1] / scale)
img = resize_img(img, width=w)
# if the resized image does not meet the supplied minimum
# size, then stop constructing the pyramid
if img.shape[0] < min_size[1] or img.shape[1] < min_size[0]:
break
# yield the next image in the pyramid
yield img
################################################################################
# generate a set of sliding window locations across the image
def sliding_window(image, window_size, step_size=8):
# slide a window across the image
for y in range(0, image.shape[0], step_size):
for x in range(0, image.shape[1], step_size):
# yield the current window
window = image[y:y + window_size[1], x:x + window_size[0]]
if not (window.shape[0] != window_size[1] or window.shape[1] != window_size[0]):
yield (x, y, window)
################################################################################
# perform basic non-maximal suppression of overlapping object detections
def non_max_suppression_fast(boxes, overlapThresh):
# if there are no boxes, return an empty list
if len(boxes) == 0:
return []
# if the bounding boxes integers, convert them to floats --
# this is important since we'll be doing a bunch of divisions
if boxes.dtype.kind == "i":
boxes = boxes.astype("float")
# initialize the list of picked indexes
pick = []
# grab the coordinates of the bounding boxes
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
# compute the area of the bounding boxes and sort the bounding
# boxes by the bottom-right y-coordinate of the bounding box
area = (x2 - x1 + 1) * (y2 - y1 + 1)
idxs = np.argsort(y2)
# keep looping while some indexes still remain in the indexes
# list
while len(idxs) > 0:
# grab the last index in the indexes list and add the
# index value to the list of picked indexes
last = len(idxs) - 1
i = idxs[last]
pick.append(i)
# find the largest (x, y) coordinates for the start of
# the bounding box and the smallest (x, y) coordinates
# for the end of the bounding box
xx1 = np.maximum(x1[i], x1[idxs[:last]])
yy1 = np.maximum(y1[i], y1[idxs[:last]])
xx2 = np.minimum(x2[i], x2[idxs[:last]])
yy2 = np.minimum(y2[i], y2[idxs[:last]])
# compute the width and height of the bounding box
w = np.maximum(0, xx2 - xx1 + 1)
h = np.maximum(0, yy2 - yy1 + 1)
# compute the ratio of overlap
overlap = (w * h) / area[idxs[:last]]
# delete all indexes from the index list that have a significant overlap
idxs = np.delete(idxs, np.concatenate(([last],
np.where(overlap > overlapThresh)[0])))
# return only the bounding boxes that were picked using the
# integer data type
return boxes[pick].astype("int")
################################################################################