forked from visitworld123/Twin-sight
-
Notifications
You must be signed in to change notification settings - Fork 0
/
randaugment.py
220 lines (170 loc) · 5.98 KB
/
randaugment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import numpy as np
import torch
import PIL
import PIL.ImageOps
import PIL.ImageEnhance
import PIL.ImageDraw
from PIL import Image
PARAMETER_MAX = 10
RESAMPLE_MODE = None
def AutoContrast(img, **kwarg):
return PIL.ImageOps.autocontrast(img)
def Brightness(img, v, max_v, bias=0):
v = _float_parameter(v, max_v) + bias
return PIL.ImageEnhance.Brightness(img).enhance(v)
def Color(img, v, max_v, bias=0):
v = _float_parameter(v, max_v) + bias
return PIL.ImageEnhance.Color(img).enhance(v)
def Contrast(img, v, max_v, bias=0):
v = _float_parameter(v, max_v) + bias
return PIL.ImageEnhance.Contrast(img).enhance(v)
def Cutout(img, v, max_v, **kwarg):
if v == 0:
return img
v = _float_parameter(v, max_v)
v = int(v * min(img.size))
w, h = img.size
x0 = torch.FloatTensor(1, ).uniform_(0, w).item()
y0 = torch.FloatTensor(1, ).uniform_(0, h).item()
x0 = int(max(0, x0 - v / 2.))
y0 = int(max(0, y0 - v / 2.))
x1 = int(min(w, x0 + v))
y1 = int(min(h, y0 + v))
xy = (x0, y0, x1, y1)
# gray
color = (127, 127, 127)
img = img.copy()
PIL.ImageDraw.Draw(img).rectangle(xy, color)
return img
def CutoutConst(img, v, max_v, **kwarg):
v = _int_parameter(v, max_v)
w, h = img.size
x0 = torch.FloatTensor(1, ).uniform_(0, w).item()
y0 = torch.FloatTensor(1, ).uniform_(0, h).item()
x0 = int(max(0, x0 - v / 2.))
y0 = int(max(0, y0 - v / 2.))
x1 = int(min(w, x0 + v))
y1 = int(min(h, y0 + v))
xy = (x0, y0, x1, y1)
# gray
color = (127, 127, 127)
img = img.copy()
PIL.ImageDraw.Draw(img).rectangle(xy, color)
return img
def Equalize(img, **kwarg):
return PIL.ImageOps.equalize(img)
def Identity(img, **kwarg):
return img
def Invert(img, **kwarg):
return PIL.ImageOps.invert(img)
def Posterize(img, v, max_v, bias, **kwarg):
v = _int_parameter(v, max_v) + bias
return PIL.ImageOps.posterize(img, v)
def Rotate(img, v, max_v, **kwarg):
v = _float_parameter(v, max_v)
if torch.rand(1,).item() < 0.5:
v = -v
return img.rotate(v)
def Sharpness(img, v, max_v, bias):
v = _float_parameter(v, max_v) + bias
return PIL.ImageEnhance.Sharpness(img).enhance(v)
def ShearX(img, v, max_v, **kwarg):
v = _float_parameter(v, max_v)
if torch.rand(1,).item() < 0.5:
v = -v
return img.transform(img.size, PIL.Image.AFFINE, (1, v, 0, 0, 1, 0), RESAMPLE_MODE)
def ShearY(img, v, max_v, **kwarg):
v = _float_parameter(v, max_v)
if torch.rand(1,).item() < 0.5:
v = -v
return img.transform(img.size, PIL.Image.AFFINE, (1, 0, 0, v, 1, 0), RESAMPLE_MODE)
def Solarize(img, v, max_v, **kwarg):
v = _int_parameter(v, max_v)
return PIL.ImageOps.solarize(img, 256 - v)
def SolarizeAdd(img, v, max_v, threshold=128, **kwarg):
v = _int_parameter(v, max_v)
if torch.rand(1,).item() < 0.5:
v = -v
img_np = np.array(img).astype(np.int)
img_np = img_np + v
img_np = np.clip(img_np, 0, 255)
img_np = img_np.astype(np.uint8)
img = Image.fromarray(img_np)
return PIL.ImageOps.solarize(img, threshold)
def TranslateX(img, v, max_v, **kwarg):
v = _float_parameter(v, max_v)
if torch.rand(1,).item() < 0.5:
v = -v
v = int(v * img.size[0])
return img.transform(img.size, PIL.Image.AFFINE, (1, 0, v, 0, 1, 0), RESAMPLE_MODE)
def TranslateY(img, v, max_v, **kwarg):
v = _float_parameter(v, max_v)
if torch.rand(1,).item() < 0.5:
v = -v
v = int(v * img.size[1])
return img.transform(img.size, PIL.Image.AFFINE, (1, 0, 0, 0, 1, v), RESAMPLE_MODE)
def TranslateXConst(img, v, max_v, **kwarg):
v = _float_parameter(v, max_v)
if torch.rand(1,).item() > 0.5:
v = -v
return img.transform(img.size, PIL.Image.AFFINE, (1, 0, v, 0, 1, 0), RESAMPLE_MODE)
def TranslateYConst(img, v, max_v, **kwarg):
v = _float_parameter(v, max_v)
if torch.rand(1,).item() > 0.5:
v = -v
return img.transform(img.size, PIL.Image.AFFINE, (1, 0, 0, 0, 1, v), RESAMPLE_MODE)
def _float_parameter(v, max_v):
return float(v) * max_v / PARAMETER_MAX
def _int_parameter(v, max_v):
return int(v * max_v / PARAMETER_MAX)
def rand_augment_pool():
augs = [(AutoContrast, None, None),
(Brightness, 1.8, 0.1),
(Color, 1.8, 0.1),
(Contrast, 1.8, 0.1),
(CutoutConst, 40, None),
(Equalize, None, None),
(Invert, None, None),
(Posterize, 4, 0),
(Rotate, 30, None),
(Sharpness, 1.8, 0.1),
(ShearX, 0.3, None),
(ShearY, 0.3, None),
(Solarize, 256, None),
(TranslateXConst, 100, None),
(TranslateYConst, 100, None),
]
return augs
def rand_augment_pool_fmnist():
augs = [(AutoContrast, None, None),
(Brightness, 1.8, 0.1),
(Color, 1.8, 0.1),
(Contrast, 1.8, 0.1),
(Equalize, None, None),
(Invert, None, None),
(Posterize, 4, 0),
(Rotate, 30, None),
(Sharpness, 1.8, 0.1),
(ShearX, 0.3, None),
(ShearY, 0.3, None),
(Solarize, 256, None),
(TranslateXConst, 100, None),
(TranslateYConst, 100, None),
]
return augs
class RandAugment(object):
def __init__(self, n, m, dataset, resample_mode=PIL.Image.BILINEAR):
assert n >= 1
assert m >= 1
global RESAMPLE_MODE
RESAMPLE_MODE = resample_mode
self.n = n
self.m = m
self.augment_pool = rand_augment_pool_fmnist() if dataset in ['fmnist'] else rand_augment_pool()
def __call__(self, img):
ops = [self.augment_pool[i] for i in torch.randint(len(self.augment_pool), (self.n,)).tolist()]
for op, max_v, bias in ops:
prob = torch.FloatTensor(1, ).uniform_(0.2, 0.8).item()
if torch.rand(1,).item() + prob >= 1:
img = op(img, v=self.m, max_v=max_v, bias=bias)
return img