-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
265 lines (218 loc) · 7.65 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# -*- coding: utf-8 -*-
import argparse
import math
import os
import dill
import io
from collections import OrderedDict
from tqdm import tqdm
from torchtext import data
import torch
import torch.nn as nn
import torch.optim as optim
import datasets
import options
import utils
from models.transformer import TranslationLM
def step(epoch, mode, model, iterator, criterion, optimizer, device):
pbar = tqdm(iterator, dynamic_ncols=True) if model.training else iterator
total_loss = 0.0
for samples in pbar:
optimizer.zero_grad()
srcs = samples.src.to(device)
tgts = samples.tgt.to(device)
if mode == 'finetune':
dec_outs = model(srcs, tgts[:-1])
loss = criterion(
dec_outs.view(-1, dec_outs.size(2)),
tgts[1:].view(-1)
)
else: # pre-train
dec_outs = model(srcs)
loss = criterion(
dec_outs.view(-1, dec_outs.size(2)),
tgts.view(-1)
)
total_loss += loss.item()
if model.training:
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()
# setting of progressbar
pbar.set_description(f'epoch {str(epoch).zfill(3)}')
progress_state = OrderedDict(
loss=loss.item(),
ppl=math.exp(loss.item()),
bsz=srcs.size(1),
lr=optimizer.param_groups[0]['lr'],
clip=args.clip)
pbar.set_postfix(progress_state)
if model.training:
pbar.close()
total_loss /= len(iterator)
mode = 'train' if model.training else 'valid'
print(f'| epoch {str(epoch).zfill(3)} | {mode} ', end='')
print(f'| loss {total_loss:.{4}} ', end='')
print(f'| ppl {math.exp(total_loss):.{4}} |', end='')
print('')
return total_loss
def main(args):
device = torch.device('cuda' if args.gpu else 'cpu')
if args.model:
basedir, _ = os.path.split(args.model)
path = os.path.join(basedir, 'text.field')
TEXT = utils.load_field(path)
else:
TEXT = data.Field(
lower=True,
init_token='<bos>',
eos_token='<eos>'
)
fields = [('src', TEXT), ('tgt', TEXT)] if args.mode else [('src', TEXT)]
# load training data
if args.mode == 'finetune':
slen_filter = lambda x: args.src_minlen <= len(x.src) <= args.src_maxlen \
and args.tgt_minlen <= len(x.tgt) <= args.tgt_maxlen
train_data = data.TabularDataset(
path=args.train,
format='tsv',
fields=fields,
filter_pred=slen_filter,
)
else: # pretrain
train_data = datasets.LanguageModelingDataset(
path=args.train,
text_field=TEXT,
newline_eos=True
)
# set Vocabulary object
if args.model is None:
TEXT.build_vocab(
train_data,
min_freq=args.min_freq,
specials=['<sep>', '<mask>'],
)
if not os.path.exists(args.savedir):
os.mkdir(args.savedir)
utils.save_field(args.savedir, [('text', TEXT)])
utils.save_vocab(args.savedir, [('text', TEXT)])
# set training iterator
if args.mode == 'finetune':
train_iter = data.BucketIterator(
train_data,
batch_size=args.batch_size,
sort_within_batch=True,
sort_key= lambda x: len(x.src),
repeat=False,
)
else: # pre-train
train_iter = datasets.BPTTIterator(
train_data,
batch_size=args.batch_size,
bptt_len=args.bptt_len,
train=True,
repeat=False,
shuffle=True,
)
print(f'| [text] Dictionary: {len(TEXT.vocab.itos)} types')
print('')
print(f' train: {args.train}')
utils.get_stats(train_iter, fields)
# load validation data
if args.valid is not None:
if args.mode == 'finetune':
valid_data = data.TabularDataset(
path=args.valid,
format='tsv',
fields=fields,
filter_pred=slen_filter,
)
valid_iter = data.BucketIterator(
valid_data,
batch_size=args.batch_size,
sort_within_batch=True,
sort_key= lambda x: len(x.src),
train=False,
repeat=False,
shuffle=False
)
else: # pre-train
valid_data = datasets.LanguageModelingDataset(
path=args.valid,
text_field=TEXT,
newline_eos=True
)
valid_iter = datasets.BPTTIterator(
valid_data,
batch_size=args.batch_size,
bptt_len=args.bptt_len,
train=False,
repeat=False,
shuffle=False,
)
print(f'valid: {args.valid}')
utils.get_stats(valid_iter, fields)
# build a model
if args.model:
load_vars = torch.load(args.model)
epoch = load_vars['epoch'] + 1
best_loss = load_vars['best_loss']
lm_args, lm_weights = load_vars['args'], load_vars['weights']
model = TranslationLM(TEXT, lm_args)
model.load_state_dict(lm_weights)
model.to(device)
else:
epoch = 1
best_loss = math.inf
model = TranslationLM(TEXT, args).to(device)
criterion = nn.CrossEntropyLoss(ignore_index=TEXT.vocab.stoi['<pad>'])
optimizer_fn = utils.get_optimizer(args.optimizer)
optimizer = optimizer_fn(model.parameters(), lr=args.lr)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min')
# show the details of model and optimizer
print('=============== MODEL ===============')
print(model)
print('')
print('=============== OPTIMIZER ===============')
print(optimizer)
print('')
max_epoch = (args.max_epoch or math.inf) + epoch
while epoch < max_epoch and args.min_lr < optimizer.param_groups[0]['lr']:
# training
model.train()
loss = step(epoch, args.mode, model, train_iter, criterion, optimizer, device)
# validation
if args.valid is not None:
model.eval()
loss = step(epoch, args.mode, model, valid_iter, criterion, optimizer, device)
# saving model
save_vars = {
'epoch': epoch,
'best_loss': loss if loss < best_loss else best_loss,
'args': args,
'weights': model.state_dict()
}
if loss < best_loss:
best_loss = loss
filename = os.path.join(args.savedir, 'checkpoint_best.pt')
torch.save(save_vars, filename)
if epoch % args.save_epoch == 0:
filename = os.path.join(args.savedir, f'checkpoint_{epoch}.pt')
torch.save(save_vars, filename)
filename = os.path.join(args.savedir, 'checkpoint_last.pt')
torch.save(save_vars, filename)
# update
scheduler.step(best_loss)
epoch += 1
if __name__ == '__main__':
parser = argparse.ArgumentParser('''
''')
subparsers = parser.add_subparsers(dest='mode')
parser_pretrain = subparsers.add_parser('pretrain', help='see `pretrain -h`')
parser_finetune = subparsers.add_parser('finetune', help='see `finetune -h`')
options.pretrain_opts(parser_pretrain)
options.model_opts(parser_pretrain)
options.finetune_opts(parser_finetune)
options.model_opts(parser_finetune)
args = parser.parse_args()
main(args)