-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgetTimelinesForHealth.R
262 lines (209 loc) · 8.37 KB
/
getTimelinesForHealth.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#' seqlast
#'
#' @param df A dataframe including time as \code{timestamp} and searches for your given geography in one column.
#' @keywords
#' @export
#' @examples
#' getTimelinesForHealth()
seqlast <- function (from, to, by) {
vec <- do.call(what = seq.Date, args = list(from, to, by))
if ( tail(vec, 1) != to ) {
return(c(vec, to))
} else {
return(vec)
}
}
#' create_time_batches
#'
#' @param df A dataframe including time as \code{timestamp} and searches for your given geography in one column.
#' @keywords
#' @export
#' @examples
#' getTimelinesForHealth()
create_time_batches <- function(start, end, year_batch){
s <- seqlast(from=ymd(start), to=ymd(end), by=year_batch)
l <- list(); ct <- 1
for(i in 1:(length(s)-1)){
l[[ct]] <- c(s[i], s[i+1]); ct <- ct + 1
}
return(l)
}
#' getTimelineForHealth
#'
#' @param df A dataframe including time as \code{timestamp} and searches for your given geography in one column.
#' @keywords
#' @export
#' @examples
#' getTimelinesForHealth()
getTimelinesForHealth <- function(
batch_size = 1,
year_batch = "1 year",
time.startDate = "2019-06-15",
time.endDate = "2020-01-01",
timelineResolutions = c(
"month"
),
terms = c(
"summer + winter + fall + spring",
"cat + cat food + dog + dog food"
),
names = c(
"seasons",
"pets"
),
geoRestriction.regions = c(
"US-NY",
"US-CA"
),
geoRestriction.countries = c(
"GB",
"US"
),
geoRestriction.dmas = c(
),
output_directory = "../output"
){
## ANALYSIS
key <- Sys.getenv("GOOGLE_TRENDS_KEY")
match_names <- data.frame(terms=terms, names=names, stringsAsFactors=F)
alt <- "json"
time_batches <- create_time_batches(time.startDate, time.endDate, year_batch)
term_batches <- split(terms, ceiling(seq_along(terms)/batch_size))
name_batches <- split(names, ceiling(seq_along(terms)/batch_size))
geoRestrictions <- c(
geoRestriction.regions,
geoRestriction.countries,
geoRestriction.dmas
)
geoRestriction.types <- c(
rep("geoRestriction.region", times=length(geoRestriction.regions)),
rep("geoRestriction.country", times=length(geoRestriction.countries)),
rep("geoRestriction.dma", times=length(geoRestriction.dmas))
)
# Make sure we're doing a valid request
if(length(terms) != length(names)) stop("terms and names must be the same length")
# timelineResolutions
if(!(timelineResolutions %in% c("year", "month", "week", "day"))) stop("Invalid timelineResolution argument")
if(!dir.exists(output_directory)) stop("output_directory does not exist")
if(batch_size >= 30) stop("batch_size must be less than 30")
if(key == "") stop("GOOGLE_TRENDS_KEY not a system variable")
if(length(geoRestrictions) == 0) stop("Need at least one geoRestriction")
dat <- list(); ct <- 1
for(timelineResolution in timelineResolutions){
for(time_batch in time_batches){
batch.startDate <- format(time_batch[1], "%Y-%m-%d")
batch.endDate <- format(time_batch[2], "%Y-%m-%d")
for(term_batch_idx in 1:length(term_batches)){
term_batch <- term_batches[[term_batch_idx]]
# name_batch <- name_batches[[term_batch_idx]]
print(sprintf("[%s] Retrieving TERMS [%s] over PERIOD [%s to %s]", Sys.time(), paste(term_batch, collapse=", "), batch.startDate, batch.endDate))
for (geo_idx in 1:length(geoRestriction.types)){
q <- list()
region <- geoRestrictions[geo_idx]
region_type <- geoRestriction.types[geo_idx]
for(term_idx in 1:length(term_batch)){
q[[term_idx]] <- term_batch[term_idx]
names(q)[term_idx] <- "terms"
}
q[["time.startDate"]] <- batch.startDate
q[["time.endDate"]] <- batch.endDate
q[["timelineResolution"]] <- timelineResolution
q[["key"]] <- key
q[["alt"]] <- alt
q[[region_type]] <- region
prms <- paste(sapply(1:length(q), function(idx) {
return(sprintf("%s=%s", names(q)[idx], URLencode(q[[idx]])))
}), collapse="&")
while(T){
try(
{
req <- gargle::request_build(
method = "GET",
path = sprintf("trends/v1beta/timelinesForHealth?%s", prms),
base_url = "https://www.googleapis.com"
)
resp <- gargle::request_make(req)
out <- gargle::response_process(resp)
break
}
)
Sys.sleep(1+runif(1))
}
out.dat <- list(); out.ct <- 1
for(out.line in out$lines){
out.term <- out.line$term
out.name <- match_names$name[match(out.term, match_names$term)]
for(out.point in out.line$points){
if (timelineResolution %in% c("day", "week")){
out.date <- as.Date(out.point$date, format="%b %d %Y")
} else if (timelineResolution %in% c("month")){
d <- out.point$date
d <- gsub(" ", " 01 ", trimws(d))
out.date <- as.Date(d, format="%b %d %Y")
} else if (timelineResolution %in% c("year")){
d <- sprintf("Jan 01 %s", out.point$date)
out.date <- as.Date(d, format="%b %d %Y")
} else {
stop("Unrecognized timelineResolution argument")
}
out.value <- out.point$value
out.dat[[out.ct]] <- rbind(c(
"timelineResolution" = timelineResolution,
"region" = region,
"term" = out.term,
"date" = as.character(as.Date(out.date, origin="1970-01-01")),
"value" = out.value,
"name_" = out.name
))
out.ct <- out.ct + 1
}
}
out.df <- do.call(rbind.data.frame, out.dat)
dat[[ct]] <- out.df; ct <- ct + 1
}
}
}
}
df <- do.call(rbind.data.frame, dat)
df <- df %>% mutate_all(as.character) %>% mutate(value = as.numeric(value))
mean0_ <- function(x){
x <- as.numeric(as.character(x))
x <- na.omit(x)
x <- x[x!=0]
return(mean(x, na.rm = T))
}
df <- df %>%
dplyr::group_by(
timelineResolution,
region,
term,
name_,
date
) %>%
dplyr::summarise(
value = mean0_(value)
) %>%
dplyr::ungroup()
# print(df %>% arrange(date) %>% head(10) )
# print(df %>% filter(grepl("2019-08", date), as.character(name_) == "pets"))
df %>%
dplyr::group_by(
timelineResolution,
name_
) %>%
dplyr::group_walk(
~write.csv(
.x %>%
dplyr::mutate(
region = gsub("-", "_", region)
) %>%
dplyr::select(date, region, value) %>%
tidyr::spread(region, value) %>%
rename(timestamp = date)
# %>% mutate(timestamp = as.Date(timestamp, format="%b %d %Y"))
,
file=sprintf("%s/%s_%s.csv", output_directory, .y$name_, .y$timelineResolution),
row.names = F
)
)
}