-
Notifications
You must be signed in to change notification settings - Fork 27
/
batch_renorm.py
289 lines (244 loc) · 13.3 KB
/
batch_renorm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
from keras import backend as K
from keras import initializers, regularizers, constraints
from keras.engine import Layer, InputSpec
from keras.utils.generic_utils import get_custom_objects
import warnings
def _moments(x, axes, shift=None, keep_dims=False):
''' Wrapper over tensorflow backend call '''
if K.backend() == 'tensorflow':
import tensorflow as tf
return tf.nn.moments(x, axes, shift=shift, keep_dims=keep_dims)
elif K.backend() == 'theano':
import theano.tensor as T
mean_batch = T.mean(x, axis=axes, keepdims=keep_dims)
var_batch = T.var(x, axis=axes, keepdims=keep_dims)
return mean_batch, var_batch
else:
raise RuntimeError("Currently does not support CNTK backend")
class BatchRenormalization(Layer):
"""Batch renormalization layer (Sergey Ioffe, 2017).
Normalize the activations of the previous layer at each batch,
i.e. applies a transformation that maintains the mean activation
close to 0 and the activation standard deviation close to 1.
# Arguments
axis: Integer, the axis that should be normalized
(typically the features axis).
For instance, after a `Conv2D` layer with
`data_format="channels_first"`,
set `axis=1` in `BatchRenormalization`.
momentum: momentum in the computation of the
exponential average of the mean and standard deviation
of the data, for feature-wise normalization.
center: If True, add offset of `beta` to normalized tensor.
If False, `beta` is ignored.
scale: If True, multiply by `gamma`.
If False, `gamma` is not used.
epsilon: small float > 0. Fuzz parameter.
Theano expects epsilon >= 1e-5.
r_max_value: Upper limit of the value of r_max.
d_max_value: Upper limit of the value of d_max.
t_delta: At each iteration, increment the value of t by t_delta.
weights: Initialization weights.
List of 2 Numpy arrays, with shapes:
`[(input_shape,), (input_shape,)]`
Note that the order of this list is [gamma, beta, mean, std]
beta_initializer: name of initialization function for shift parameter
(see [initializers](https://keras.io/initializers)), or alternatively,
Theano/TensorFlow function to use for weights initialization.
This parameter is only relevant if you don't pass a `weights` argument.
gamma_initializer: name of initialization function for scale parameter (see
[initializers](https://keras.io/initializers)), or alternatively,
Theano/TensorFlow function to use for weights initialization.
This parameter is only relevant if you don't pass a `weights` argument.
moving_mean_initializer: Initializer for the moving mean.
moving_variance_initializer: Initializer for the moving variance.
gamma_regularizer: instance of [WeightRegularizer](
https://keras.io/regularizers) (eg. L1 or L2 regularization),
applied to the gamma vector.
beta_regularizer: instance of [WeightRegularizer](
https://keras.io/regularizers), applied to the beta vector.
beta_constraint: Optional constraint for the beta weight.
gamma_constraint: Optional constraint for the gamma weight.
# Input shape
Arbitrary. Use the keyword argument `input_shape`
(tuple of integers, does not include the samples axis)
when using this layer as the first layer in a model.
# Output shape
Same shape as input.
# References
- [Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift](https://arxiv.org/abs/1502.03167)
"""
def __init__(self, axis=-1, momentum=0.99, center=True,
scale=True, epsilon=1e-3,
r_max_value=3., d_max_value=5.,
t_delta=1e-3, weights=None, beta_initializer='zero',
gamma_initializer='one', moving_mean_initializer='zeros',
moving_variance_initializer='ones',
gamma_regularizer=None, beta_regularizer=None,
beta_constraint=None, gamma_constraint=None, **kwargs):
if axis != -1 and K.backend() == 'tensorflow':
raise NotImplementedError('There is currently a bug '
'when using batch renormalisation and '
'the TensorFlow backend.')
warnings.warn('This implementation of BatchRenormalization is inconsistent with the '
'original paper and therefore results may not be similar ! '
'For discussion on the inconsistency of this implementation, '
'refer here : https://github.com/keras-team/keras-contrib/issues/17')
self.supports_masking = True
self.axis = axis
self.epsilon = epsilon
self.center = center
self.scale = scale
self.momentum = momentum
self.gamma_regularizer = regularizers.get(gamma_regularizer)
self.beta_regularizer = regularizers.get(beta_regularizer)
self.initial_weights = weights
self.r_max_value = r_max_value
self.d_max_value = d_max_value
self.t_delta = t_delta
self.beta_initializer = initializers.get(beta_initializer)
self.gamma_initializer = initializers.get(gamma_initializer)
self.moving_mean_initializer = initializers.get(moving_mean_initializer)
self.moving_variance_initializer = initializers.get(
moving_variance_initializer)
self.beta_constraint = constraints.get(beta_constraint)
self.gamma_constraint = constraints.get(gamma_constraint)
super(BatchRenormalization, self).__init__(**kwargs)
def build(self, input_shape):
dim = input_shape[self.axis]
if dim is None:
raise ValueError('Axis ' + str(self.axis) + ' of '
'input tensor should have a defined dimension '
'but the layer received an input with shape ' +
str(input_shape) + '.')
self.input_spec = InputSpec(ndim=len(input_shape),
axes={self.axis: dim})
shape = (dim,)
if self.scale:
self.gamma = self.add_weight(shape=shape,
initializer=self.gamma_initializer,
regularizer=self.gamma_regularizer,
constraint=self.gamma_constraint,
name='{}_gamma'.format(self.name))
else:
self.gamma = None
if self.center:
self.beta = self.add_weight(shape=shape,
initializer=self.beta_initializer,
regularizer=self.beta_regularizer,
constraint=self.beta_constraint,
name='{}_beta'.format(self.name))
else:
self.beta = None
self.running_mean = self.add_weight(shape=shape,
initializer=self.moving_mean_initializer,
name='{}_running_mean'.format(self.name),
trainable=False)
self.running_variance = self.add_weight(
shape=shape,
initializer=self.moving_variance_initializer,
name='{}_running_std'.format(self.name),
trainable=False)
self.r_max = K.variable(1, name='{}_r_max'.format(self.name))
self.d_max = K.variable(0, name='{}_d_max'.format(self.name))
self.t = K.variable(0, name='{}_t'.format(self.name))
self.t_delta_tensor = K.constant(self.t_delta)
if self.initial_weights is not None:
self.set_weights(self.initial_weights)
del self.initial_weights
self.built = True
def call(self, inputs, training=None):
assert self.built, 'Layer must be built before being called'
input_shape = K.int_shape(inputs)
reduction_axes = list(range(len(input_shape)))
del reduction_axes[self.axis]
broadcast_shape = [1] * len(input_shape)
broadcast_shape[self.axis] = input_shape[self.axis]
mean_batch, var_batch = _moments(inputs, reduction_axes,
shift=None, keep_dims=False)
std_batch = (K.sqrt(var_batch + self.epsilon))
r = std_batch / (K.sqrt(self.running_variance + self.epsilon))
r = K.stop_gradient(K.clip(r, 1 / self.r_max, self.r_max))
d = (mean_batch - self.running_mean) / K.sqrt(self.running_variance
+ self.epsilon)
d = K.stop_gradient(K.clip(d, -self.d_max, self.d_max))
if sorted(reduction_axes) == range(K.ndim(inputs))[:-1]:
x_normed_batch = (inputs - mean_batch) / std_batch
x_normed = (x_normed_batch * r + d) * self.gamma + self.beta
else:
# need broadcasting
broadcast_mean = K.reshape(mean_batch, broadcast_shape)
broadcast_std = K.reshape(std_batch, broadcast_shape)
broadcast_r = K.reshape(r, broadcast_shape)
broadcast_d = K.reshape(d, broadcast_shape)
broadcast_beta = K.reshape(self.beta, broadcast_shape)
broadcast_gamma = K.reshape(self.gamma, broadcast_shape)
x_normed_batch = (inputs - broadcast_mean) / broadcast_std
x_normed = (x_normed_batch * broadcast_r
+ broadcast_d) * broadcast_gamma + broadcast_beta
# explicit update to moving mean and standard deviation
mean_update = K.moving_average_update(self.running_mean,
mean_batch,
self.momentum)
variance_update = K.moving_average_update(self.running_variance,
std_batch ** 2,
self.momentum)
self.add_update([mean_update, variance_update], inputs)
# update r_max and d_max
r_val = self.r_max_value / (1 + (self.r_max_value - 1) * K.exp(-self.t))
d_val = (self.d_max_value
/ (1 + ((self.d_max_value / 1e-3) - 1) * K.exp(-(2 * self.t))))
self.add_update([K.update(self.r_max, r_val),
K.update(self.d_max, d_val),
K.update_add(self.t, self.t_delta_tensor)], inputs)
if training in {0, False}:
return x_normed
else:
def normalize_inference():
if sorted(reduction_axes) == list(range(K.ndim(inputs)))[:-1]:
x_normed_running = K.batch_normalization(
inputs, self.running_mean, self.running_variance,
self.beta, self.gamma,
epsilon=self.epsilon)
return x_normed_running
else:
# need broadcasting
broadcast_running_mean = K.reshape(self.running_mean,
broadcast_shape)
broadcast_running_std = K.reshape(self.running_variance,
broadcast_shape)
broadcast_beta = K.reshape(self.beta, broadcast_shape)
broadcast_gamma = K.reshape(self.gamma, broadcast_shape)
x_normed_running = K.batch_normalization(
inputs, broadcast_running_mean, broadcast_running_std,
broadcast_beta, broadcast_gamma,
epsilon=self.epsilon)
return x_normed_running
# pick the normalized form of inputs corresponding to the training phase
# for batch renormalization, inference time remains same as batchnorm
x_normed = K.in_train_phase(x_normed, normalize_inference,
training=training)
return x_normed
def get_config(self):
config = {
'epsilon': self.epsilon,
'axis': self.axis,
'center': self.center,
'scale': self.scale,
'momentum': self.momentum,
'gamma_regularizer': initializers.serialize(self.gamma_regularizer),
'beta_regularizer': initializers.serialize(self.beta_regularizer),
'moving_mean_initializer': initializers.serialize(
self.moving_mean_initializer),
'moving_variance_initializer': initializers.serialize(
self.moving_variance_initializer),
'beta_constraint': constraints.serialize(self.beta_constraint),
'gamma_constraint': constraints.serialize(self.gamma_constraint),
'r_max_value': self.r_max_value,
'd_max_value': self.d_max_value,
't_delta': self.t_delta
}
base_config = super(BatchRenormalization, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
get_custom_objects().update({'BatchRenormalization': BatchRenormalization})