forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_ipex_ops.py
226 lines (203 loc) · 7.62 KB
/
_ipex_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from typing import List, Optional, Tuple
import torch
from vllm.logger import init_logger
logger = init_logger(__name__)
try:
import intel_extension_for_pytorch as ipex
except ImportError as e:
logger.warning("Import error msg: %s", e.msg)
class ipex_ops:
@staticmethod
def _reshape_activation_tensor(
x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
num = x.size(0)
d = x.size(1) // 2
x = x.reshape(num, 2, d)
x1, x2 = torch.chunk(x, chunks=2, dim=1)
x1 = x1.reshape(num, d)
x2 = x2.reshape(num, d)
return x1, x2
@staticmethod
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
ipex.llm.functional.silu_and_mul(x, out)
@staticmethod
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
ipex.llm.functional.gelu_and_mul(x, out)
@staticmethod
def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
ipex.llm.functional.gelu_and_mul(x, out)
@staticmethod
def gelu_fast(x: torch.Tensor) -> torch.Tensor:
return torch.nn.functional.gelu(x)
@staticmethod
def gelu_new(x: torch.Tensor) -> torch.Tensor:
return torch.nn.functional.gelu(x)
@staticmethod
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
ipex.llm.functional.gelu_quick(x, out)
@staticmethod
def paged_attention_v1(
out: torch.Tensor,
query: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
num_kv_heads: int,
scale: float,
block_tables: torch.Tensor,
context_lens: torch.Tensor,
block_size: int,
max_context_len: int,
alibi_slopes: Optional[torch.Tensor],
kv_cache_dtype: str,
k_scale: float,
v_scale: float,
tp_rank: int = 0,
blocksparse_local_blocks: int = 0,
blocksparse_vert_stride: int = 0,
blocksparse_block_size: int = 64,
blocksparse_head_sliding_step: int = 0,
) -> None:
assert kv_cache_dtype == "auto"
num_heads = out.size(1)
num_queries_per_tokens = num_heads // num_kv_heads
ipex.llm.modules.PagedAttention.single_query_kv_attention(
out,
query.contiguous(),
key_cache.view_as(value_cache),
value_cache,
num_queries_per_tokens,
scale,
block_tables,
context_lens,
block_size,
max_context_len,
alibi_slopes,
)
@staticmethod
def paged_attention_v2(
out: torch.Tensor,
exp_sum: torch.Tensor,
max_logits: torch.Tensor,
tmp_out: torch.Tensor,
query: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
num_kv_heads: int,
scale: float,
block_tables: torch.Tensor,
context_lens: torch.Tensor,
block_size: int,
max_context_len: int,
alibi_slopes: Optional[torch.Tensor],
kv_cache_dtype: str,
k_scale: float,
v_scale: float,
tp_rank: int = 0,
blocksparse_local_blocks: int = 0,
blocksparse_vert_stride: int = 0,
blocksparse_block_size: int = 64,
blocksparse_head_sliding_step: int = 0,
) -> None:
assert kv_cache_dtype == "auto"
num_heads = out.size(1)
num_queries_per_tokens = num_heads // num_kv_heads
ipex.llm.modules.PagedAttention.single_query_kv_attention(
out,
query.contiguous(),
key_cache.view_as(value_cache),
value_cache,
num_queries_per_tokens,
scale,
block_tables,
context_lens,
block_size,
max_context_len,
alibi_slopes,
)
@staticmethod
def rotary_embedding(
positions: torch.Tensor, # [batch_size, seq_len]
query: torch.Tensor, # [batch_size, seq_len, num_heads*head_size]
key: torch.Tensor, # [batch_size, seq_len, num_kv_heads*head_size]
head_size: int,
cos_sin_cache: torch.Tensor, # [cos_sin_dim, rot_dim]
is_neox: bool,
) -> None:
rot_dim = cos_sin_cache.size(1)
ipex.llm.functional.rotary_embedding_batched(positions, query, key,
head_size, cos_sin_cache,
is_neox, rot_dim)
@staticmethod
def batched_rotary_embedding(positions: torch.Tensor, query: torch.Tensor,
key: torch.Tensor, head_size: int,
cos_sin_cache: torch.Tensor, is_neox: bool,
rot_dim: int,
cos_sin_cache_offsets: torch.Tensor) -> None:
ipex.llm.functional.rotary_embedding_batched(positions, query, key,
head_size, cos_sin_cache,
is_neox, rot_dim,
cos_sin_cache_offsets)
@staticmethod
def rms_norm(input: torch.Tensor, weight: torch.Tensor,
epsilon: float) -> torch.Tensor:
return ipex.llm.functional.rms_norm(input, weight, epsilon)
@staticmethod
def fused_add_rms_norm(input: torch.Tensor, residual: torch.Tensor,
weight: torch.Tensor, epsilon: float) -> None:
tmp = ipex.llm.functional.add_rms_norm(residual, input, weight, None,
epsilon, True)
input.copy_(tmp)
@staticmethod
def varlen_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
out: torch.Tensor,
seqlen_q: torch.Tensor,
seqlen_k: torch.Tensor,
max_seqlen_q: int,
max_seqlen_k: int,
pdropout: float,
softmax_scale: float,
zero_tensors: bool,
is_causal: bool,
return_softmax: bool,
gen_: torch.Generator,
logits_soft_cap: float,
) -> None:
ipex.llm.functional.varlen_attention(query.contiguous(),
key.contiguous(),
value.contiguous(), out,
seqlen_q.int(), seqlen_k.int(),
max_seqlen_q, max_seqlen_k,
pdropout, softmax_scale,
zero_tensors, is_causal,
return_softmax, gen_,
logits_soft_cap)
@staticmethod
def reshape_and_cache(
key: torch.Tensor,
value: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
slot_mapping: torch.Tensor,
kv_cache_dtype: str,
k_scale: float,
v_scale: float,
) -> None:
assert kv_cache_dtype == "auto"
ipex.llm.modules.PagedAttention.reshape_and_cache(
key, value, key_cache, value_cache, slot_mapping)
@staticmethod
def copy_blocks(key_caches: List[torch.Tensor],
value_caches: List[torch.Tensor],
block_mapping: torch.Tensor) -> None:
torch.xpu.copy_blocks( # type: ignore
key_caches,
value_caches,
block_mapping,
)
@staticmethod
def swap_blocks(src: torch.Tensor, dst: torch.Tensor,
block_mapping: torch.Tensor) -> None:
torch.xpu.swap_blocks(src, dst, block_mapping) # type: ignore